

Reg. No.	:	•••••	
Name :			

VI Semester B.Sc. Degree (CBCSS – Reg./Supple./Improv.)

Examination, April 2019

(2014 Admission Onwards)

CORE COURSE IN MICROBIOLOGY

6B16 MCB: Sanitation Microbiology

Time: 3 Hours Max. Marks: 40

Instruction: Draw diagrams wherever necessary.

SECTION - A

	4×1=4)
4. As per BIS standard the total coliform content of potable water should	be
3. Water bodies are considered severely polluted when BOD values exceed	
2. The composition of biogas is	
1. The filters used in laminar air flow are	
Answer all questions. Each question carries 1 mark.	

SECTION - B

Answer any seven questions of the following. Each question carries 2 marks.

- 5. Sources of drinking water.
- 6. Most probable number.
- 7. COD.
- 8. Oxidation pond.
- 9. Methanogens.

K19U 0131

- 10. MSW.
- 11. Aerosols.
- 12. Fumigation of rooms.
- 13. Biofilms.
- 14. Humus sludge.

 $(7 \times 2 = 14)$

SECTION - C

Answer any four questions of the following. Each question carries 3 marks.

- 15. Indicator organism.
- 16. Characteristics of sewage.
- 17. Trickling filters.
- 18. Sand filtration of drinking water.
- 19. Design and management of biogas plant.
- 20. Air sanitation methods.

 $(4 \times 3 = 12)$

SECTION - D

Answer any two questions of the following. Each question carries 5 marks.

- 21. Describe the water purification steps in municipal water supplies.
- 22. Discuss the aerobic treatment processes of sewage.
- 23. Discuss the sources, types and processing of solid wastes.
- 24. Discuss the methods for aeration and filtration of drinking water. $(2\times5=1)$