

Reg. No.	:	
Nome		

IV Semester B.Sc. Degree (C.B.C.S.S. – O.B.E. – Regular/Supplementary/ Improvement) Examination, April 2024 (2019 to 2022 Admissions) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 4C04 MAT – PH: Mathematics for Physics – IV

Time: 3 Hours Max. Marks: 40

PART - A

Answer any four questions from this Part. Each question carries 1 mark.

- 1. Define a linear partial differential equation.
- 2. Define a gradient field of a differential function f(x, y, z).
- 3. Give an example of an non-orientable surface.
- 4. State trapezoidal rule.
- 5. State the fundamental theorem of line integrals. (4×1=4)

Answer any seven questions. Each question carries 2 marks.

- 6. Verify that $u=e^x\cos y$, $e^x\sin y$ is a solution of the Laplace equation $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0$.
- 7. Verify that u = v(x) + w(y) with any v and w satisfies the partial differential equation $u_{xy} = 0$.
- 8. Integrate $f(x, y) = \frac{x^3}{y}$ over the curve $C: y = \frac{x^2}{2}, 0 \le x \le 2$.
- 9. Prove that curl grad $f = \overline{0}$.
- 10. State Green's theorem.

K24U 0731

- 11. Find a parametrization of the sphere $x^2 + y^2 + z^2 = a^2$.
- 12. Solve y' = -y with the condition that y(0) = 1 by Euler's method.
- 13. Explain the method of solution of differential equation y'(x, y) = f(x, y) with the initial condition $y(x_0) = y_0$ by Taylor series.
- 14. Explain Euler's method to find the solution of the differential equation.
- 15. Find the divergence of the vector field $\overline{F}(x, y, z) = z\hat{j}$.
- 16. Find the work done by the force field $\vec{F} = x\hat{i} + y\hat{j} + z\hat{k}$ in moving an object along the curve C parametrized by $\vec{r}(t) = \cos(\pi t)\hat{i} + t^2\hat{j} + \sin(\pi t)\hat{k}$, $0 \le t \le 1$. (7×2=14)

Answer any four questions. Each question carries 3 marks.

- 17. Solve $u_{xx} + 2u_{xy} + u_{yy} = 0$.
- 18. If u_1 and u_2 are solutions of $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ in some region R. Prove that $u = c_1 u_1 + c_2 u_2$ is also a solution of the above partial differential equation.
- 19. Find the flux of $\vec{F} = (x y)\hat{i} + x\hat{j}$ across the circle $x^2 + y^2 = 1$ in the xy-plane.
- 20. Integrate $G(x, y, z) = \sqrt{1 x^2 y^2}$ over the "football" surface S formed by rotating the curves $x = \cos z$, y = 0, $-\frac{\pi}{2} \le z \le \frac{\pi}{2}$ around the z-axis.
- 21. A solid of revolution is formed by rotating about the x-axis the area between the x-axis, the lines x = 0 and x = 1, and a curve through the points with the following coordinates :

Х	Υ
0.00	1.0000
0.25	0.9896
0.50	0.9589
0.75	0.9089
1.00	0.8415

K24U 0731 -3-

- 22. Evaluate $y = \int_0^{\frac{\pi}{2}} \sqrt{\sin x} \, dx \, using \, Simpson's \, \frac{1}{3}$ rule with $h = \frac{\pi}{12}$.
- 23. Find the surface area of a sphere of radius a.

 $(4 \times 3 = 12)$

PART - D

Answer any two questions. Each question carries 5 marks.

- 24. Find the solution of the one dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$, subject to the initial conditions u(x, 0) = f(x), $u_t(x, 0) = g(x)$, $(0 \le x \le L)$.
- 25. Verify both forms of Green's theorem for the vector field $\overline{F}(x, y) = (x y)\hat{i} + x\hat{j}$ and the region R bounded by the unit circle C : $\overline{r}(t) = cost \, \hat{i} + sint \, \hat{j}, \, 0 \le t \le 2\pi$.
- 26. Given $\frac{dy}{dx} = y x$, where y(0) = 2, find y(0.1) and y(0.2) correct to four decimal places.
- 27. Find the outward flux of the field $\vec{F} = (y-x)\hat{i} + (z-y)\hat{j} + (y-x)\hat{k}$ across the boundary of the cube D bounded by the planes $x = \pm 1$, $y = \pm 1$ and $z = \pm 1$. (2×5=10)

