| Reg. No. : | | |------------|---| | Name : | • | # Third Semester B.Sc. Degree (CBCSS – OBE – Regular/Supplementary/ Improvement) Examination, November 2022 (2019 Admission Onwards) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 3C03 MAT-PH: Mathematics for Physics – III Time: 3 Hours Max. Marks: 40 ### PART - A Answer any four questions. Each question carries one mark. - 1. Evaluate $\int_{1}^{2} \int_{0}^{4} 2xy \, dy \, dx$. - 2. Find a vector parallel to the line of intersection of the planes 3x 6y 2z = 15 and 2x + y 3z = 5. - 3. Let $r(t) = (t^2 + 1)i + (2t 1)j 2tk$ be the position of a particle in space at time t. Find particles velocity and acceleration vectors. - 4. Find the Laplace transform of eat. - 5. What is the fundamental period of $f(x) = \sin 2\pi x$? ## PART - B Answer any seven questions. Each question carries two marks. - 6. Find the volume of the prism whose base is the triangle in xy plane bounded by the x axis and the lines y = x and x = 1 and whose top lies in the plane z = x y. - 7. Find the average value of $f(x, y) = x \cos xy$ over the rectangle $R: 0 \le x \le \pi, \ 0 \le y \le 1$. - 8. Find the area enclosed by the lemniscate $r^2 = 4\cos 2\theta$. - 9. Find an equation for the plane through A(0, 0, 1), B(2, 0, 0) and C(0, 3, 0). # K22U 3633 10. Find the distance from S(1, 1, 3) to the plane 3x + 2y + 6z = 6. 11. Find the unit tangent vector of the curve $r(t) = (1 + 2cost)i + (2sin t)j + \sqrt{3tk}$. -2- 12. Find the derivative of $f(x, y, z) = x^3 - xy^2 - z$ at $P_0(1, 1, 0)$ in the direction of 13. Find the inverse Laplace transform of $\frac{6s + 7}{2s^2 + 4s + 10}$. 14. Find L(t) if $f(t) = \cos^2 \omega t$. 15. Find e^{-t}*e^t 16. Find the Fourier series of the function $f(x) = x + \pi$ if $\pi < x < \pi$ and $f(x+2\pi)=f(x).$ ### PART - C Answer any four questions. Each question carries three marks. 17. Find the volume of the wedge like solid that lies beneath the surface $z=16-x^2-y^2$ and above the region R bounded by the curve $y=2\sqrt{x}$, the line y = 4x - 2, and the x-axis. 18. Using triple integrals find the volume of the region cut from the cylinder $x^2 + y^2 = 4$ by the plane z = 0 and the plane x + z = 3. 19. Find the arc length of the curve $r(t) = (t \sin t + \cos t)i + (t \cos t - \sin t)j$ from 20. Using Laplace method solve the initial value problem y'' + y' + 9y = 0, y(0) = 0.10, y'(0) = 0. 21. Apply convolution theorem to find f(t) if $L(f) = \frac{2\pi s}{(s^2 + \pi^2)^2}$. 22. Find the Fourier series for $f(x) = \begin{cases} x & \text{if } -\pi < x < 0 \\ \pi - x & \text{if } 0 < x < \pi \end{cases}$ 23. Find the Fourier series of the function $f(x) = \begin{cases} k & \text{if } -1 < x < 1 \end{cases}$, with period p = 4. # PART - D Answer any two questions. Each question carries five marks. - 24. Evaluate $\int_0^3 \int_0^4 \int_{x=\frac{y}{2}}^{x=\frac{y}{2}+1} \left(\frac{2x-y}{2} + \frac{z}{3}\right)$ dxdydz by applying the transformation $u = \frac{2x-y}{2}, \ v = \frac{y}{2}, \ w = \frac{z}{3}$ and integrating over an appropriate region in uvw-space. - 25. Find T, N and K for $r(t) = (\cos^3 t)i + (\sin^3 t)j$, $0 < t < \frac{\pi}{2}$ - 26. Using Laplace transform solve $y_1' 2y_1 + 3y_2 = 0, \ y_2' y_1 + 2y_2 = 0, y_1(0) = 1, y_2(0) = 0 \ \cdot$ - 27. Find the two half range expansions of the function $$f(x) = \begin{cases} \frac{2k}{L}x & \text{if } 0 < x < \frac{L}{2} \\ \frac{2k}{L}(L-x) & \text{if } \frac{L}{2} < x < L \end{cases}.$$