

Reg. No. :	
Name :	•

Third Semester B.Sc. Degree (CBCSS – OBE – Regular/Supplementary/ Improvement) Examination, November 2022 (2019 Admission Onwards) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 3C03 MAT-PH: Mathematics for Physics – III

Time: 3 Hours

Max. Marks: 40

PART - A

Answer any four questions. Each question carries one mark.

- 1. Evaluate $\int_{1}^{2} \int_{0}^{4} 2xy \, dy \, dx$.
- 2. Find a vector parallel to the line of intersection of the planes 3x 6y 2z = 15 and 2x + y 3z = 5.
- 3. Let $r(t) = (t^2 + 1)i + (2t 1)j 2tk$ be the position of a particle in space at time t. Find particles velocity and acceleration vectors.
- 4. Find the Laplace transform of eat.
- 5. What is the fundamental period of $f(x) = \sin 2\pi x$?

PART - B

Answer any seven questions. Each question carries two marks.

- 6. Find the volume of the prism whose base is the triangle in xy plane bounded by the x axis and the lines y = x and x = 1 and whose top lies in the plane z = x y.
- 7. Find the average value of $f(x, y) = x \cos xy$ over the rectangle $R: 0 \le x \le \pi, \ 0 \le y \le 1$.
- 8. Find the area enclosed by the lemniscate $r^2 = 4\cos 2\theta$.
- 9. Find an equation for the plane through A(0, 0, 1), B(2, 0, 0) and C(0, 3, 0).

K22U 3633

10. Find the distance from S(1, 1, 3) to the plane 3x + 2y + 6z = 6.

11. Find the unit tangent vector of the curve $r(t) = (1 + 2cost)i + (2sin t)j + \sqrt{3tk}$.

-2-

12. Find the derivative of $f(x, y, z) = x^3 - xy^2 - z$ at $P_0(1, 1, 0)$ in the direction of

13. Find the inverse Laplace transform of $\frac{6s + 7}{2s^2 + 4s + 10}$.

14. Find L(t) if $f(t) = \cos^2 \omega t$.

15. Find e^{-t}*e^t

16. Find the Fourier series of the function $f(x) = x + \pi$ if $\pi < x < \pi$ and $f(x+2\pi)=f(x).$

PART - C

Answer any four questions. Each question carries three marks.

17. Find the volume of the wedge like solid that lies beneath the surface $z=16-x^2-y^2$ and above the region R bounded by the curve $y=2\sqrt{x}$, the line y = 4x - 2, and the x-axis.

18. Using triple integrals find the volume of the region cut from the cylinder $x^2 + y^2 = 4$ by the plane z = 0 and the plane x + z = 3.

19. Find the arc length of the curve $r(t) = (t \sin t + \cos t)i + (t \cos t - \sin t)j$ from

20. Using Laplace method solve the initial value problem y'' + y' + 9y = 0, y(0) = 0.10, y'(0) = 0.

21. Apply convolution theorem to find f(t) if $L(f) = \frac{2\pi s}{(s^2 + \pi^2)^2}$.

22. Find the Fourier series for $f(x) = \begin{cases} x & \text{if } -\pi < x < 0 \\ \pi - x & \text{if } 0 < x < \pi \end{cases}$

23. Find the Fourier series of the function $f(x) = \begin{cases} k & \text{if } -1 < x < 1 \end{cases}$, with period p = 4.

PART - D

Answer any two questions. Each question carries five marks.

- 24. Evaluate $\int_0^3 \int_0^4 \int_{x=\frac{y}{2}}^{x=\frac{y}{2}+1} \left(\frac{2x-y}{2} + \frac{z}{3}\right)$ dxdydz by applying the transformation $u = \frac{2x-y}{2}, \ v = \frac{y}{2}, \ w = \frac{z}{3}$ and integrating over an appropriate region in uvw-space.
- 25. Find T, N and K for $r(t) = (\cos^3 t)i + (\sin^3 t)j$, $0 < t < \frac{\pi}{2}$
- 26. Using Laplace transform solve $y_1' 2y_1 + 3y_2 = 0, \ y_2' y_1 + 2y_2 = 0, y_1(0) = 1, y_2(0) = 0 \ \cdot$
- 27. Find the two half range expansions of the function

$$f(x) = \begin{cases} \frac{2k}{L}x & \text{if } 0 < x < \frac{L}{2} \\ \frac{2k}{L}(L-x) & \text{if } \frac{L}{2} < x < L \end{cases}.$$