Reg. No. : \qquad
Name: \qquad

V Semester B.Sc. Degree (C.B.C.S.S. - Supplementary) Examination, November 2022 (2016-18 Admissions) CORE COURSE IN PHYSICS 5B06PHY - Electrodynamics - I

Time : 3 Hours
Max. Marks : 40
Instructions : 1) Section \boldsymbol{A} : Answer all questions. (Very short answer type.
Each question carries 1 mark.)
2) Section B:Answer any seven questions. (Short answer type. Each question carries 2 marks.)
3) Section \boldsymbol{C} : Answer any four questions. (Short essay/ problem type. Each question carries 3 marks.)
4) Section D: Answer any two questions. (Long essay type. Each question carries five marks.)

SECTION - A

1. Write down Gauss law in differential form.
2. The ratio of the polarization to ε_{0} times the electric field is called \qquad
3. What is the strength of the electric field inside a charged conducting solid sphere?
4. If the strength of the magnetic field at a point r near a long straight currentcarrying wire is B. The value of the field at a distance $r / 2$ will be \qquad $(4 \times 1=4)$

SECTION - B

5. Write down Laplace equation in Cartesian co-ordinate system.
6. What are the boundary conditions of B and H ?
7. Show that $\nabla^{2} A=\mu_{0} J$, where A is the magnetic vector potential.
8. Briefly explain dielectric polarization.
9. Write down any two properties of electric conductors.
10. State and explain Biot-Savart law.
11. What are polar and non polar molecules with examples?
12. Show that the divergence of a vector field is a scalar point function.
13. What is the work done to move a charge in an electric field?
14. Derive electric field at any point as the negative of the gradient of potential at that point.

SECTION - C

15. A sphere of radius 0.1 m is charged with 10^{-8} Coulomb of charge. Find the potential and electric field at any internal point.
16. If $F=x^{3} y \hat{i}-4 y^{2} z^{2} \hat{j}+x y^{3} z \hat{k}$, find ∇. F at ($1,-1,1$).
17. A solenoid consisting of 400 turns is wound on a former of radius 5 cm and length 50 cm . What is the value of magnetic flux density at (a) the midpoint of the solenoid, (b) at the end, when a current of 2 mA flows through it ?
18. Compute the magnetic field of a long straight wire that has a circular loop with a radius of 0.05 m . The current of 2 A is flowing through this closed loop.
19. Find the electric field at an external point P outside the uniformly charged spherical conductor at a distance r from the centre.
20. Obtain the expression for the energy due to continuous charge distribution.
SECTION - D
21. Using Gauss law, obtain the electric field due to spherically symmetric charge distribution.
22. State and explain Ampere's circuital law. Determine the magnetic field B for long solenoid of length l, carrying current I.
23. Obtain the expression for the potential energy of a point charge distribution.
24. Explain Clausius - Messotti equation.
