Reg. No. :

I Semester B.Sc. Degree (C.B.C.S.S. – O.B.E. – Regular/Supplementary/
Improvement) Examination, November 2021
(2019 Admission Onwards)
COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS
1C01 MAT – PH: Mathematics for Physics – I

Time: 3 Hours Max. Marks: 40

PART - A

Answer **any 4** questions from among the questions 1 to 5. **Each** question carries **1** mark.

- 1. If $y = \sin^{-1} x$, show that $(1 x^2)y_2 xy_1 = 0$.
- 2. Verify Rolle's theorem for the function $f(x) = e^x (\sin x \cos x)$ in $\left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$.
- 3. Determine the rank of the matrix $\begin{bmatrix} 0 & 1 & 2 \\ 2 & 0 & 3 \\ 2 & 1 & 5 \end{bmatrix}$.
- 4. Write the polar equation of the circle $x^2 + (y 2)^2 = 4$.
- 5. Find $\frac{dy}{dx}$ if $ay^2 = x^3$.

PART - B

Answer **any 7** questions from among the questions 6 to 15. **Each** question carries **2** marks.

6. Find the nth derivative of $\frac{x+3}{(x-1)(x-2)}$.

K21U 6799

-2-

7. If
$$x = \frac{1}{2} \left(t - \frac{1}{t} \right)$$
, $y = \frac{1}{2} \left(t + \frac{1}{t} \right)$, find $\frac{d^2y}{dx^2}$.

- 8. If $y = e^{5x} \sin 3x$, prove that $y_2 10y_1 + 34y = 0$.
- 9. Write the Maclaurin's series expansion of tan x with at least three terms with non zero coefficients.
- 10. If x is positive, prove that $log(1+x) \ge x \frac{x^2}{2}$.
- 11. Expand $tan^{-1}x$ in powers of x 1.
- 12. Verify Cauchy's Mean Value Theorem for the function $f(x) = \cos x$ in [a,b].
- 13. Find the values of λ and μ for which the system 2x + 5y + 5z = 9, 7x + 3y 2z = 8, $2x + 3y + \lambda z = \mu$ has no solution.
- 14. Check whether the matrix $A = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$ is orthogonal or not. Also find
- 15. Solve the system of equations x + y + z = 4, x y + z = 0, 2x + y + z = 5 using Cramer's rule.

Answer **any 4** questions from among the questions 16 to 22. **Each** question carries **3** marks.

- 16. If $y = a \cos \log x + b \sin \log x$, show that $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$.
- 17. Find the n^{th} derivative of $y = x \log \frac{x-1}{x+1}$.
- 18. Show that $x \frac{x^3}{6} \sin x < x \frac{x^3}{6} \frac{x^5}{120}$, if x > 0.
- 19. Find a, b, c so that $\lim_{x\to 0} \frac{ae^x b\cos x + ce^{-x}}{x\sin^2 x} = 2$.

- 20. Using Gauss-Jordan method, find the inverse of the matrix $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 1 & -3 \\ -2 & -4 & -4 \end{bmatrix}$
- 21. Are the vectors (2,1,1), (2,0,-1), (4,2,1) linearly independent? If so find the relation between them.
- 22. Find the radius of convergence of the curve, $y = c \cosh\left(\frac{x}{c}\right)$ at (0, c).

Answer **any 2** questions from among the questions 23 to 26. **Each** question carries **5** marks.

- 23. a) If $y = e^{a \sin^{-1} x}$, prove that $(1 x^2)y_{n+2} (2n + 1)xy_{n+1} (n^2 + a^2)y_n = 0$. Also find the value of y_n when x = 0.
 - b) Find the nth derivative of $y = e^{5x} \cos x \cos 3x$.
- 24. a) Prove that $log(1 + sin x) = x \frac{x^2}{2} + \frac{x^3}{6} \frac{x^4}{12} + \dots$
 - b) Evaluate $\lim_{x\to 0} \frac{e^x \sin x x x^2}{x^2 + x \log(1-x)}$
- 25. a) Find two non-singular matrices P and Q such that PAQ is in normal form,

where
$$A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
.

- b) Using partition method, find the inverse of $A = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix}$.
- 26. a) Find the centre of curvature of the curve $y^2 = 4ax$ at $(at^2, 2at)$.
 - b) Write the spherical equation and cylindrical equation of $z=\sqrt{x^2+y^2}$.