K21U 65

Reg. No. :

Name :

I Semester B.Sc. Degree (C.B.C.S.S. – Supplementary) Examination, November 2021 (2015 - 2018 Admissions) COMPLEMENTARY COURSE IN MATHEMATICS 1C01MAT – CS: Mathematics for Computer Science – I

Time: 3 Hours

Max. Marks : 4

SECTION - A

Answer all the questions. Each question carries 1 mark.

- 1. Find $\frac{d}{dx}$ (cosh x).
- 2. State the Cauchy's mean value theorem.
- 3. Find the domain of the function $f(x) = \log (x + y)$.
- 4. Write the Cartesian equation $x^2 + y^2 = 9$ by equivalent polar equation.

SECTION - B

Answer any seven questions. Each question carries 2 marks.

- 5. Find $\frac{dy}{dx}$, when $x = 2 \cos t \cos 2t$ and $y = 2 \sin t \sin 2t$.
- 6. Find the nth derivative of $y = \frac{x}{(x+2)(x+3)}$.
- 7. State the Maclaurin's theorem.
- 8. Verify Rolle's theorem for the function $f(x) = x^3 9x$ on [0, 3].
- 9. Find the intervals for the function $f(x) = (x-2)^2 (x+1)$ is decreasing.
- 10. Evaluate $\lim_{x \to 1} \frac{1 + \log x x}{1 2x + x^2}$.

K21U 6562

11. If
$$u = e^{xyz}$$
, find $\frac{\partial^2 u}{\partial y \partial x}$.

12. If
$$z = f(x, y)$$
, $x = \phi(u, v)$ and $y = \psi(u, v)$, find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$.

13. Show that for any curve $\frac{1}{\rho} = \frac{d}{dx} \left(\frac{dy}{ds} \right)$, where ρ is the radius of curvature of the

Answer any four questions. Each question carries 3 marks.

Answer any four questions. Each questions and the following states and the following states are set (x = 2).

14. If y = sin (sin x), show that
$$\frac{d^2y}{dx^2}$$
 + tan x $\frac{dy}{dx}$ + y cos² x = 0.

15. Expand
$$2x^3 + 7x^2 + x - 6$$
 in powers of $(x - 2)$.

16. Find the value of c of the Lagrange's mean value theorem for the function $f(x) = \log x \text{ on } [1, e].$

$$f(x) = \log x \text{ on } [1, e].$$
17. If $u = \cot^{-1} \frac{x+y}{\sqrt{x} + \sqrt{y}}$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + \frac{1}{4} \sin 2u = 0$.

18. If
$$r^m = a^m \cos m\theta$$
 is a curve, prove that $\rho = \frac{a^m}{(m+1)r^{m-1}}$.

19. Graph the set of points whose polar coordinates satisfy $-3 \le r \le 2$ and $\theta = \frac{\pi}{4}$.

Answer any two questions. Each question carries 5 marks.

- 20. Expand cos x by Maclaurin's series.
- 21. Find the values of a and b such that $\lim_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^3} = 1$.
- 22. Prove that the coordinates of the centre of curvature at any point (x, y) can be expressed in the form $x - \frac{dy}{d\psi}$ and $y + \frac{dx}{d\psi}$.
- 23. Translate the equation ρ = 9 cos ϕ into Cartesian and cylindrical equations.