

Reg. No. :	
Name :	

V Semester B.Sc. Degree CBCSS (OBE) Regular Examination, November 2021 (2019 Admn. Only) CORE COURSE IN PHYSICS 5B09PHY: Electronics – II

Time: 3 Hours

Max. Marks: 40

SECTION - A

(Very short answer type. Answer all questions. Each question carries 1 mark.)

- 1. What do you mean by operating point?
- 2. The purpose of a coupling capacitor in transistor amplifier is
- 3. Write down the expression for frequency of Colpitt's Oscillator.
- 4. The inputs to an XOR Gate is 1 and 1. What is its output?
- 5. A differential amplifier has a common mode gain of 0.3 and a differential voltage gain of 3000. Determine CMRR.
- 6. An inverting amplifier has $R_{_f}$ = 10 K Ω and $R_{_f}$ = 100 K Ω . The closed loop voltage gain is (6×1=6)

SECTION - B

(Short essay type. Answer any 6 questions. Each question carries 2 marks.)

- 7. Explain De Morgan's theorem with an example.
- 8. Differentiate open loop and closed loop voltage gain.
- 9. Explain the working of an inverting amplifier.
- 10. Write a short note on hybrid parameters and their dimensions.

K21U 4562

- 11. What is a Phase shift oscillator? Draw the circuit and obtain the expression for frequency.
- 12. Express power gain and voltage gain in decibel unit. What is the importance of expressing gain in decibel unit?
- 13. Explain the following terms:
 - 1) Frequency Response
 - 2) Band width.
- 14. Illustrate Sum of Products method with an example.

 $(6 \times 2 = 12)$

SECTION - C

(Problem type. Answer any 4 questions. Each question carries 3 marks.)

- 15. Obtain an expression for the closed loop voltage gain of a non-inverting amplifier.
- 16. Calculate the operating frequency and feedback fraction of Hartley oscillator. Given $L_1 = 1$ mH, $L_2 = 0.1$ mH, C = 20 pF. The mutual inductance between coils is 0.02 mH. Calculate the feedback fraction.
- 17. Draw a full adder circuit. Obtain the expression for sum and carry.
- 18. For a single stage CE transistor amplifier circuit R_1 = 10 K Ω , R_2 = 5 K Ω , R_C = 1 K Ω , R_E = 2 K Ω , R_E = 1 K Ω , R_E = 0.7 V and R_E = 15 V.
 - 1) Draw the dc load line.
 - 2) Determine the operating point.
 - 3) Draw the ac load line.
- 19. Simplify the Boolean expression X = AB + A(B + C) + B(B + C).
- 20. Convert the SOP expression $X = \overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + ABC$ to POS. (4×3=12)

SECTION - D

(Long essay type. Answer any 2 questions. Each question carries 5 marks.)

- 21. Draw the circuit of a single stage common emitter transistor amplifier. Explain the functions of all components and show that output is 180° out of phase with the input.
- 22. What is a power amplifier? Compare Class A, Class B and Class C amplifiers.
- 23. Explain the working of an integrator and a differentiator circuit using Op-amp.
- 24. Briefly explain the working of comparator, decoder and encoder circuits. (2×5=10)