

Reg. No. :

Name :

V Semester B.Sc. Degree CBCSS (OBE) Regular Examination, November 2021 (2019 Admn. Only) CORE COURSE IN PHYSICS 5B07 PHY : Electrostatics and Magnetostatics

Time : 3 Hours

Max. Marks: 40

PART – A

- I. Answer all questions. Each carries 1 mark :
 - 1) Write Poisson's and Laplace's equation.
 - 2) What is the relation between electric field and potential ?
 - 3) What is the physical significance of electric displacement vector D?
 - 4) Give significance of the equation $\nabla B = 0$.
 - 5) How the magnetization M is related to bound current J_b?
 - 6) What is the relation between Magnetic field and magnetic vector potential ?

PART – B

- II. Answer any 6 questions. Each carries 2 marks :
 - 1) Distinguish diamagnets and paramagnets.
 - Find the work done to charge up a parallel plate capacitor.
 - 3) Find the potential energy of a dipole placed in an external electric field E.
 - 4) Show that the electrostatic field inside a charged hollow sphere is zero.
 - 5) What is a linear dielectric material ? Obtain displacement vector D for a linear dielectric material.
 - 6) What is a ferromagnetic material ?
 - 7) Show that Curl of electrostatic field is zero.
 - 8) Find the magnetic field due to a long straight current carrying wire.

P.T.O.

K21U 4560

PART - C

- III. Answer any 4 questions. Each carries 3 marks :
 - 1) Find the energy stored in a uniformly charged solid sphere of radius R and charge q.
 - 2) The vector potential A and the scalar potential V in a certain region of space are given to be $A = \frac{1}{2}a(xj + yi)$, $V = \frac{1}{4}a(x^2 + y^2)$, where 'a' is a constant. Find the electric and magnetic fields corresponding to these potentials.
 - 3) The magnetic susceptibility of silicon is -0.4×10^{-5} . Calculate the flux density and magnetic moment per unit volume when a magnetic field of intensity 5×10^5 A/m is applied.
 - 4) Calculate magnetic flux density of the magnetic field at the centre of a circular coil of 50 turn, having radius of 10 cm and carrying a current of 5 A.
 - 5) Find the electric field at both inside and outside of a uniformly charged solid sphere of radius R and total charge Q.
 - 6) Find the magnetic field of an infinite uniform surface current K = K i flowing over the xy plane.

PART – D

- IV. Answer any 2 questions. Each carries 5 marks :
 - Two long straight conductors carrying currents are placed parallel to each other. Explain why they attract or repel each other. Derive an expression for force of attraction or repulsion.
 - 2) Derive equations for div and curl of electrostatic field E due to a volume distribution of charge.
 - 3) Derive boundary conditions for electric displacement vector D.
 - 4) Derive the equation of field due to a magnetized object. Discuss Physical interpretation of Bound currents.