|||||||||||||||||||||||||||||||||

Reg. No.: \qquad
Name: \qquad
II Semester B.Sc. Degree (CBCSS - OBE - Reg./Sup./Imp.) Examination, April 2021 (2019 Admission Onwards) CORE COURSE IN PHYSICS 2B02PHY - Mathematical Physics and Error Analysis Max. Marks : 40
Time: 3 Hours

SECTION - A

Answer all questions. Each question carries 1 marks.

1. What is the geometrical meaning of divergence?
2. Explain the law of cosines.
3. Write down the RHS of the following equations:
i) $\vec{A} \times(\vec{B} \times(\vec{C} \times \vec{D}))=$
ii) $\vec{A} \times(\vec{B} \times \vec{C})=$
4. Express the gradient in cylindrical coordinate system.
5. Give the general formula for error propagation.
6. What are random and systematic errors?

SECTION - B

Answer any 6 questions. Each question carries 2 marks.
7. Define and explain the fundamental theorem of divergence.
8. Define curl and explain its geometrical interpretation.
9. What is the superposition principle of homogeneous linear differential equations? Prove it. P.T.O.
10. What is meant by the general solution, the particular solution, and the basis of a homogeneous linear second order differential equation?
11. What is a nonlinear differential equation?
12. What is meant by an exact differential equation?
13. What is the integrating factor? Give an example.
14. Briefly explain the uncertainty in sum and difference rule for error propagation.
$(6 \times 2=12)$
SECTION - C

Answer any 4 questions. Each question carries 3 marks.
15. Check the fundamental theorem for gradients, using the function $T=x^{2}+4 x y+2 y z^{3}$ and the points $a=(0,0,0), b=(1,1,1)$, through the following two paths:
a) $(0,0,0) \rightarrow(1,0,0) \rightarrow(1,1,0) \rightarrow(1,1,1)$
b) $(0,0,0) \rightarrow(0,0,1) \rightarrow(0,1,1) \rightarrow(1,1,1)$
16. Let $\vec{C}=\vec{A}-\vec{B}$. Caiculate the dot product of \vec{C} with itself and prove the law of cosines.
17. Find the divergence and curl of the function
$\vec{V}=r\left(2+\sin ^{2} \phi\right) \hat{r}+r \sin \phi \cos \phi \hat{\phi}+3 z^{2} \hat{z}$
18. Compute the gradient and Laplacian of the function $T=r(\cos \theta+\dot{\sin } \theta \cos 0)$.
19. Solve the initial value problem $y^{\prime \prime}+y^{\prime}-6 y=0, y(0)=10, y^{\prime}(0)=0$.
20. A student makes 5 measurements of the magnitude of electron's charge e as follows:
$15,17,18,14,16$
ail in units of 10^{-20} Coulombs. Find the best estimate for e and its uncertainty
as standard deviation of mean.

SECTION - D
Answer any 2 questions. Each question carries 5 marks.
21. Define and explain the fundamental theorems of gradient, divergence and curl.
22. a) What is a spherical polar coordinate system?
b) Find the expression for volume of a sphere using spherical polar coordinates.
23. a) Derive the general formula for uncertainty.
b) The atwood machine consists of 2 masses M and m with $M>m$ attached to the ends of a light string that passes over a light frictionless pulley. When the masses are released, the mass M is easily shown to accelerate down with an acceleration $a=g \frac{M-m}{M+m}$. Suppose that M and m are measured as $M=100 \pm 1$ and $m=50 \pm 1$, both in grams. Use the general rule to derive a formula for the uncertainty in the expected acceleration δ a in terms of the masses and their uncertainties and then find δ for the given numbers.
24. a) Briefly explain a method to solve a second order homogeneous linear differential equations with constant coefficients.
b) Find the solution for $y^{\prime \prime}-4 y^{\prime}+4 y=0, y(0)=3$, and $y^{\prime}(0)=1$.

