

Time: 3 Hours

K21U 1544
 V Semester B.Sc. Degree (CBCSS - Sup./Imp.)
 Examination, November 2021
 (2015 - '18 Admns)
 CORE COURSE Admns) 5B06 PHY : Electrodynamics - 1

Max. Marks : 40
SECTION - A
. Each question carries 1 mark).
2. Polarisation is proportional to \qquad
3. The divergence of the Electric displacement is equal to
\qquad
Two parallel wires carrying current in the same direction attract each other
because of
SECTION - B

Answer any seven questions (Short answer tye
5. State Coulomb's law. Write downer type. Each question carries 2 marks).
6. Write down Pion the expression.
equation and explain its significance.
8. Explain suctric potential ?
9. Writ down
10. What is meant by conditions for E and D.

11 Define .
12. .
12. What is Lorentz force? Write down the relation.
13. State Biot Savart law.
14. What is magnetic vector potential?
SECTION - C

Answer any four questions. (Short essay/problem type. Each question carries 3 marks).
15. A point charge of 1.0×10^{-4} coulomb is at the centre of a cubical Gaussian surface 0.5 m on edge. What is the flux for the surface?
16. Find the electric field due to a uniformally charged spherical conductor (Hollow or solid).
17. Show that the energy of a dipole in an electric field is given by $U=-\vec{p} \cdot \vec{E}$.
18. A dielectric cube of side a centered at the origin carries a frozen in polarization $\vec{p}=k \vec{r}$, where k is a constant. Find all the bound charges (ρ_{b} and σ_{b}).
19. A wire of length 60 cm and mass 10 kg is suspended by two vertical wires at its ends in a magnetic field of 0.4 T acts perpendicular to the wire. What is the magnitude of current required to remove the tension in the supporting wires?
20. A charge of $3.2 \times 10^{-19} \mathrm{C}$ makes 60 revolutions per minute in a circular orbit of radius 0.5 A . What is the magnetic field at the centre of the circular orbit?
$(4 \times 3=12)$

SECTION - D

Answer any two questions (Long essay type. Each question carries 5 marks).
21. State and prove Gauss's law. Find the electric field due to a charged cylindrical conductor of infinite length.
22. Derive Clausius Mossotti relation.
23. State and explain Ampere's circuital theorem. Prove it and also deduce the differential form of it.
24. Derive an expression for the magnetic field due to a straight conductor carrying steady current using Biot Savart law.
($2 \times 5=10$)

