K20U 3321

Reg. No. :	
Name :	

I Semester B.Sc. Degree CBCSS (OBE) Reg./Sup./Imp. Examination, November 2020 (2019 Admn. Onwards) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 1C01 MAT - PH: Mathematics for Physics - I

Time: 3 Hours

Max. Marks: 40

PART - A **Short Answer**

Answer any four questions out of five questions. Each question carries 1 mark:

- 1. Find the derivative of $2x^5 x^3 x$.
- 2. Write the Maclaurin's series of sin θ .
- 3. Find the rank of the matrix $A = \begin{bmatrix} 3 & 0 & 0 \\ 1 & 5 & 0 \\ 2 & 5 & 1 \end{bmatrix}$.
- 4. Find the polar equation of the Cartesian coordinate $x^2 + y^2 = 1$.
- 5. Graph the set of points whose polar coordinates satisfy the condition $-3 \le r \le 2$, $\theta = \frac{\pi}{4}$? $(4 \times 1 = 4)$

PART - B **Short Essay**

Answer any seven questions out of ten questions. Each question carries 2 marks :

- 6. Find the derivative of $y = \frac{\sin t}{\sin 2t}$.
- 7. If $x = \sec t$ and $y = \tan t$, then find $\frac{dy}{dx}$.
- 8. Find $\frac{dy}{dx}$ when $x^3 + y^3 = 3axy$.

K20U 3321

- 9. Verify Mean value theorem for $f(x) = x^2$ in [-2, 3].
- 10. Find $\lim_{x\to 0} \left[\frac{x-\sin x}{x^3} \right]$.
- 11. For what values of λ the matrix $A = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 5 & 0 & 0 \\ 1 & 2 & 1 & \lambda \end{bmatrix}$ has rank 3? Give reason for
- 12. Using the Gauss-Jordan method, find the inverse of $A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$.
- 13. Verify that the matrix $A = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$ is orthogonal. 14. Find $\frac{ds}{dy}$ for the curve $ay^2 = x$, where s is the arc length.
- 15. Find a spherical coordinate equation for the sphere $x^2 + y^2 + (z-2)^2 = 4$. (7×2=14)

PART - C Essay

Answer any four questions out of seven questions. Each question carries 3 marks:

- 16. Find $\frac{d}{d\theta}(\sin^{-1}\theta)$, where $\theta \in (-1, 1)$.
- 17. If $y = [x^{tanx} + (sinx)^{cosx}]$, then find $\frac{dy}{dx}$.
- 18. Find the values of a and b such that $\lim_{x\to 0} \left[\frac{x(1+a\cos x)-b\sin x}{x^3} \right] = 1.$
- 19. Verify Rolle's theorem for $f(x) = \frac{\sin x}{e^x}$ in $[0, \pi]$.
- 20. Solve the equations 3x + y + 2z = 3, 2x 3y z = -3, x + 2y + z = 4 by matrix
- 21. Are the vectors $x_1 = (1, 1, 1)$, $x_2 = (2, 2, 2)$ and $x_3 = (3, 3, 3)$ linearly dependent? If so express one of these as a linear combination of the others.
- 22. Prove that the radius of curvature at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ of the Folium $x^3 + y^3 = 3axy \text{ is } \frac{3a}{8\sqrt{2}}$. $(4 \times 3 = 12)$

PART – D Long Essay

Answer any two questions out of four questions. Each question carries 5 marks :

- 23. a) If siny = x sin(a + y), then find $\frac{dy}{dx}$.
 - b) If $x^y = e^{x-y}$, prove that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$.
- 24. a) Expand $\log (1 + x)$ upto the term containing x^5 .
 - b) Expand $log(1 + sin^2 x)$ in powers of x as far as the term in x^6 .
- 25. a) Reduce the matrix $A = \begin{bmatrix} 4 & 8 & 8 & 0 \\ 1 & 3 & 4 & 0 \\ 2 & 2 & 4 & 2 \end{bmatrix}$ into its normal form and hence find its rank.
 - b) Test for consistency of the linear system of equations x + 2y + 4z + w = 5, 3x + 6y + 12z + 3w = 15, 4x + 8y + 16z + 4w = 0, 5x + 10y + 20z + 5w = 0.
- 26. a) Show that the radius of curvature at any point of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 \cos \theta)$ is $4a \cos \frac{\theta}{2}$.
 - b) Find all polar coordinates of the point $\left(2, \frac{\pi}{6}\right)$. (2×5=10)