

Reg. No.: ..Splaceskie......

Name: ... Subta D

9. Find the degree of the homogeneous function ta I Semester B.Sc. Degree (CCSS - Regular) Examination, November 2014 (2014 Admn.)

COMPLEMENTARY COURSE IN MATHEMATICS 1C01 MAT - CS: Mathematics for Computer Science - 1

Time: 3 Hours Wood policy and the isolayer bins enuisyup to aution Max. Marks: 40

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

The derivative of cosech⁻¹x is __

- 3. Find the first order partial derivatives of e^{x-y}.
- 4. Graph the set of points whose polar coordinates satisfy $\frac{2\pi}{3} \le \theta \le \frac{5\pi}{6}$. (4×1=4)

SECTION - B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.

- 5. Find $\frac{dy}{dx}$ when $x = a(\cos t + \sin t)$ and $y = a(\sin t t \cos t)$. 18. In a triangle ABC, the angles and sides a and b are made to vary in
- 6. Derive the n^{th} derivative of $y = \sin(ax + b)$.od2 instance anismer sense of tadt
- respectively, then cos A 6a + cos B 7. Verify Rolle's theorem for $f(x) = x^2$ in [-1, 1].
- 8. Show that $f(x) = x^3 3x^2 + 3x + 2$ is strictly increasing in every interval.

Red. No. 1 .. Splyccakie

- 9. Find the degree of the homogeneous function tan u where $u = tan^{-1} \left(\frac{x + y}{\sqrt{x} + \sqrt{y}} \right)$.
- 10. If $z = \tan^{-1} \left(\frac{y}{x} \right)$, then verify that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$.
- 11. Define the radius of curvature and evaluate it for s = c log secψ where c is a constant.
- 12. Find the chord of curvature parallel to the y-axis.
- 13. Find the polar equation for the circle $(x-2)^2 + y^2 = 4$.

 $(7 \times 2 = 14)$

SECTION - C

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.

- 14. Find $\frac{dy}{dx}$ if $y = (\cos x) \log^x$.
- 15. Expand e^{sin x} by using Maclaurin's Theorem.
- 16. Determine $\lim_{x\to 0^-} \frac{a^x 1 x \log_e^a}{\cos x^2}$ denotes up entignoms montanotes up x vns tewens
- 17. Evaluate $\lim_{x\to a} (x-a)^{x-a}$.
- 18. In a triangle ABC, the angles and sides a and b are made to vary in such a way that the area remains constant. Show that a and b vary by small amounts δa , δb respectively, then $\cos A\delta a + \cos B\delta b = 0$.
- 19. To prove that the curvature of a circle is a constant.

 $(4 \times 3 = 12)$

SECTION - D

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

20. If $y = cos(msin^{-1}x)$, then show that

$$(1 - x^2)y_{n+2} - (2n + 1) xy_{n+1} + (m^2 - n^2) y_n = 0.$$

- 21. State Taylor's theorem. Use it to expand $2x^3 + 7x^2 + x 6$ in powers of x 2.
- 22. Prove that $f_{xy}(0,0) \neq f_{yx}(0,0)$ for the function f is given by

$$f(x, y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & ; & (x, y) \neq (0, 0) \\ 0 & \text{otherwise} \end{cases}$$

23. Find the evolute of the astroid $x = a \cos^3 \theta$ and $y = a \sin^3 \theta$. (2x5=10)

SECTION-B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.

5. Find $\frac{dy}{dt}$ when $x = a(\cos t + \sin t)$ and $y = a(\sin t - t \cos t)$

6. Derive the nin derivative of $y = \sin(ax + b)$.

7. Verity Rolle's theorem for $f(x) = x^2$ in (-1, 1)

B Show that $f(x) = x^3 - 3x^2 + 3x + 2$ is smotly increasing in every interval