

Reg. No.:....

Name:.....

IV Semester B.Sc. Degree (CBCSS – Reg./Supp./Imp.)

Examination, April 2019

(2014 Admission Onwards)

COMPLEMENTARY COURSE IN MATHEMATICS

4C04 MAT – PH: Mathematics for Physics and Electronics – IV

Time: 3 Hours

Max. Marks: 40

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Find curl, \vec{r} , $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$
- 2. State Green's theorem.
- 3. Give the iteration formula for Euler method.
- 4. What is an algebraic equation?

SECTION - B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each

- 5. Find the arc length of that portion of the circular helix x = cost, y = sint, z = t from t = 0 to $t = \pi$.
- 6. Find the curvature of a circle of radius a.
- 7. Find the directional derivative of f(x, y) = xy at (1, 2) in the direction of $\vec{a} = \frac{\sqrt{3}}{2}\vec{i} + \frac{1}{2}\vec{j}$

- 8. Evaluate $\int_C F \cdot dr$ where $F = -y\vec{i} xy\vec{j}$ and c is the circular arc given by $r(t) = \cot \vec{i} + \sin t\vec{j}, \ 0 \le t \le \frac{\pi}{2}.$
- 9. $F(x, y) = y \vec{i} + x \vec{j}$, evaluate $\int_{(0,0)}^{(1,1)} F$. dr.
- 10. Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ using Green's theorem.
- 11. Show that $\nabla = \Delta E^{-1}$.
- 12. Explain Euler method to solve first order ordinary differential equation.
- 13. Using Taylor series, solve $y' = x y^2$, y(0) = 1.

SECTION - C

Answer any four questions from among the questions 14 to 19. These questions carry 3 marks each :

- 14. If F = f(x, y, z) is a differentiable vector field, show that div (curl F) = 0.
- 15. Find the workdone by the force field F $(x, y) = (e^x y^3)^{-1} + (\cos y + x^3)^{-1}$ on a particle that travels once around the unit circle $x^2 + y^2 = 1$ in the counter clockwise direction.
- 16. Find real root of the equation $x^3 2x 5 = 0$ using Bisection method.
- 17. Use Picard's method to obtain y for x = 0.25, $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$, y(0) = 0.
- 18. Derive Newton's forward interpolation formula.
- 19. Find $\frac{dy}{dx}$ for the function at x = 3.

x: 3 3.2 3.4 3.6

y: -14 -10.032 -5.296 0.256 6.672 14

SECTION - D

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

- 20. Find the curvature of the ellipse $\vec{r} = 2\cos t \vec{i} + 3 \sin t \vec{j}$ at the end points of its major axis.
- 21. Verify Gauss divergence theorem for $f(x, y, z) = 2x\vec{i} + 3y\vec{j} + z^2\vec{k}$ across the unit cube.
- 22. Evaluate $\int_{1}^{3} \frac{1}{x} dx$ by simpsons rule with 8 strips.
- 23. Use Runge-Kutta method to solve $10\frac{dy}{dx} = x^2 + y^2$, y(0) = 1 for the interval $0 < x \le 0.4$ with h = 0.1.