

Reg.	·N	0.	:	*******************************

The Tax of the law to the second of the seco

IV Semester B.Sc. Degree (CCSS-Supple./Imp.) Examination, May 2016 COMPLEMENTARY COURSE IN MATHEMATICS 4C04 MAT: Numerical Analysis and Vector Calculus (2013 & Earlier Admissions)

.01 - 18 - V0 V + x a .8 - Max. Weightage : 30 Time: 3 Hours

11. Deing Basica Ammanica method, solver ha uitoot om Po

4	Fill in the blanks:	E - 1207 호	ne Hara Leva	sarid malabas F	undinada t	างรักษาสาร	Using theth	100
١.	FIII III THE DIATIKS.	J. J. Speiter 254	Line of DAN STATE	不行人的 人名罗拉斯 海拔	afrant, fankjus esta u	14,285 x 25,37 x 1 x 2	THE PERSON NAMED IN COLUMN TO SERVICE OF SER	

- a) If the vector function $\vec{u}(t)$ is constant, then $\frac{d\vec{u}}{dt} = \frac{1}{|\vec{u}|} = \frac{1}{|\vec{u}|}$
- b) If ϕ is a surface, then normal to the surface is
- c) A vector point function \vec{f} is said to form a conservative field if
- d) If \vec{f} is a conservative field and there exist a scalar function ϕ such that $\vec{f} = \nabla \phi$, then ϕ is known as a subsequent of \vec{f} and become a function (Weightage 1)

Answer any six from the following.

(Weightage 1 each)

- 2. Using Newton-Raphson method, find a positive solution of $x^3 + x 1 = 0$.
- 3. What do you mean by divided differences? State Newton's divided difference interpolation formula. 17. If r = xi + vi + zk and r = |r|, prove that divigued "
- 4. Apply Euler's method to solve the initial value problem y' = x + y, y(0) = 0 to find is y(0.1) and y(0.2). Take h = 0:1. The short may have used be used by
- 5. Solve $y' = y^2 + x$, y(0) = 1 using Taylor's series method and compute y(0, 1).
- 6. Find the angle between the tangents to the curve $x = 5t^2$, y = t, $z = 3 t^3$ at the points $t = \pm 1$. = x of 0 = x mon 38 = 8x from x = 0 to x = 1
- 7. If $f(x, y, z) = x^2 + y^2 2z^2$, find ∇f at the point (1, 1, 1).
- 8. Find the values of the constants a, b, c so that 90 to be a long at a 10 11.05

$$\vec{f} = (axy + bz^3)\hat{i} + (3x^2 - cz)\hat{j} + (3xz^2 - y)\hat{k}$$
 may be irrotational.

K16U 0515

9. If $\vec{F} = (3x^2 + 6y)\hat{i} - 14yz\hat{j} + 20xz^2\hat{k}$, evaluate $\int_C \vec{F} \cdot d\vec{r}$ from (0, 0, 0) to (1, 1, 1) along the path x = t, $y = t^2$, $z = t^3$.

10. State Divergence theorem.

(Weightage 6×1=6)

Answer any seven from the following.

(Weightage 2 each)

- 11. Using Gauss elimination method, solve the equations 2x + 2y + z = 12; 3x + 2y + 2z = 8; 5x + 10y 8z = 10.
- 12. Using matrix inversion method, solve the equations 3x y + z = 6; 4x y + 2z = 7; 2x y + z = 4.
- 13. Using trapezoidal rule evaluate $\int_0^6 \frac{dx}{1+x^2}$ by dividing the interval into 6 sub-intervals.
- 14. Apply Euler's modified method to solve the initial value problem y' = x + y, y(0) = 1 to find y(0, 1).
- 15. Using Picard's method find approximate solution to the initial value problem $y' = 1 + y^2$, y(0) = 0.
- 16. If \vec{F} is a vector function of the scalar variable t, show that $\frac{d}{dt} [\vec{F}, \vec{F}', \vec{F}''] = [\vec{F}, \vec{F}', \vec{F}'']$.
- 17. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$, prove that div (grad r^n) = $n(n + 1) r^{n-2}$.
- 18. If u and v are scalar point functions and \vec{F} is a vector point function such that $\vec{uF} = \nabla v$, prove that \vec{F} curl $\vec{F} = 0$.

- 1 - 2 malde la putevir him antiavida et berttem a 1916 il Migda :

19. Find the work done in moving a particle if the force field $\vec{f} = 3x^2\hat{i} + (2xz - y)\hat{j} + z\hat{k}$ along the curve defined by $x^2 = 4y$, $3x^3 = 8z$ from x = 0 to x = 2.

. Pronact and the second

20. If C is a simple closed curve and $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, prove that $\int_C \vec{r} \cdot d\vec{r} = 0$.

Answer any three from the following.

(Weightage 3 each)

21. Given that the values

x: 20 25 30 35 40 45

f(x): 354 332 291 260 231 204

Evaluate f (22) using Newton's forward interpolation formula.

- 22. Using Runge-Kutta method of fourth order, find an approximate value of y(0.1) and y(0.2) from 10 $\frac{dy}{dx} = x^2 + y^2$, given that y(0) = 1, taking h = 0.1.
- 23. a) If \vec{f} and \vec{g} are two differential vector functions, then prove that $\nabla \cdot (\vec{f} \times \vec{g}) = \vec{g} \cdot (\nabla \times \vec{f}) \vec{f} \cdot (\nabla \times \vec{g})$.
 - b) If \vec{u} and \vec{v} are irrotational, prove that $\vec{u} \times \vec{v}$ is solenoidal.
- 24. A vector field is given by $\vec{F} = (x^2 y^2 + x)\hat{i} (2xy + y)\hat{j}$. Show that the field is irrotational and find its scalar potential.
- 25. Verify Green's theorem in the plane for $\int_C (xy + y^2) dx + x^2 dy$ where C is the curve enclosing the region bounded by the parabola $y = x^2$ and the line y = x. (Weightage 3x3=9)