P 9 Reg. No.: Name : III Semester B.Sc. Degree (CCSS-Reg./Supple./Imp.) Examination, November 2014 COMPLEMENTARY COURSE IN MATHEMATICS 3C03 MAT: Differential Equations, Laplace Transforms, Fourier Series and Partial Differential Equations | Time | • | 3 | H | lo | u | rs | |------|---|---|---|----|---|----| | | | | | | | | Max. Weightage: 30 - 1. Fill in the blanks: - a) Number of arbitrary constants in the solution of a first degree first order ordinary differential equation is _______ - b) Laplace transform of coshat is _____ - d) One dimensional heat equation is _____ (Weightage: 1) Answer any six from the following: - 2. What do you mean by exact differential equation? - 3. Solve $\frac{dy}{dx} = \frac{x}{y}$. - 4. Reduce the differential equation $y' + p(x)y = g(x)y^n$ to linear equation by using suitable substitution. - 5. What do you mean by a self-orthogonal curve? - 6. Find Laplace transform of sin32t, and which the contribute with the to accomplish the first sind to the contribute of - 7. State second shifting theorem for Laplace transform. - 8. Find inverse Laplace transform of $\frac{s}{(s-1)(s-2)}$. - 9. State half range Fourier Cosine series formula. - Verify that $u = e^{-t} \sin x$ satisfies one dimensional heat equation by assuming suitable value for the constant in the heat equation. (Weightage: 6×1=6) Answer any seven from the following: 11. Solve $$(x + 1) \frac{dy}{dx} - y = e^{3x} (x + 1)^2$$. - $\sqrt{2}$. Find the orthogonal trajectories of xy = c. - 13. Using method of variation of parameters, solve $y'' + y = \tan x$. 14. Solve $$\frac{dx}{dt} + 2x - 3y = 0$$; $\frac{dx}{dt} - 3x + 2y = 0$. - 15. Find the Laplace transform of te-t cos t. - 16. Find inverse Laplace transform of $\frac{se^{-s/2} + \pi e^{-s}}{s^2 + \pi^2}$ - 17. Find the Laplace transform of the periodic function $$f(t) = \begin{cases} \sin \omega t & 0 < t < \frac{\pi}{\omega} \\ 0 & \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases}, \ f\left(t + \frac{2\pi}{\omega}\right) = f(t).$$ - 18. Find the Fourier sine series of f(x) = x in (0, 2). - 19. Find a solution u(x, y) of the partial differential equation $u_{xx} u = 0$. - 20. Using the method of separation of variables, solve the PDE $u_{xx} + u_{yy} = 0$. (Weightage: $7 \times 2 = 14$) Answer any three from the following: - 21. Solve the initial value problem $y'' + 2y' + 5y = 1.25e^{0.5x} + 40\cos 4x 55\sin 4x$, y(0) = 0.2, y'(0) = 60.1. - 22. Using Laplace transform, solve y''' + 2y'' y' 2y = 0, y(0) = 0, y'(0) = 0 and y''(0) = 6. - 23. Expand f(x) = |x| in Fourier series in the interval $(-\pi, \pi)$. Also deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} \dots = \frac{\pi^2}{8}.$ - 24. Find the Fourier series of period 21 for the function $$f(x) = \begin{cases} l - x & 0 \le x \le l \\ 0 & l \le x \le 2l \end{cases}.$$ 25. Using the method of separation of variables, obtain the possible solution of one dimensional heat equation. (Weightage: 3×3=9)