

Reg. No. :

Third Semester B.Sc. Degree (CBCSS – Reg./Supple./Imp.) Examination, November 2016

(2014 Admn. Onwards)

COMPLEMENTARY COURSE IN MATHEMATICS FOR COMPUTER SCIENCE

3C03 MAT - CS: Mathematics for Computer Science - III

Time: 3 Hours

Max. Marks: 40

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Solve: $y' + y^4 \sin x = 0$.
- 2. Find the Wronskian of the functions, $y_1 = e^t$ sint and $y_2 = e^t$ cost.
- 3. Find the inverse Laplace transform of $\frac{3}{s^2 + 4}$.
- 4. Write the one-dimensional heat equation.

 $(4 \times 1 = 4)$

SECTION-B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.

- 5. Solve: $y' y = e^{2x}$.
- 6. Solve: $-\pi \sin \pi x \sinh dx + \cos \pi x \cosh y dy = 0$.
 - 7. Find the orthogonal trajectories of the family of curves, $y = \frac{2x}{5 + kx}$.
 - 8. Find a differential equation whose general solution is $y = c_1 e^{2t} + c_2 e^{-3t}$.
 - 9. Find the inverse Laplace transform of $\frac{s+1}{s^2+2s+10}$.
- 2 0. Find the Laplace transform of $5e^{-at} \sin \omega t$.

THE REPORT OF THE PARTY OF THE

K16U 2114

- 11. Find the Fourier series of the function $f(x) = x + \pi$ if $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$.
- 12. Solve for $u = u(x, y) : u_{xy} = -u_x$.
- 13. Show that $u = \sin 8x \cos 2t$ is a solution to the one-dimensional wave equation. (7×2=14)

SECTION - C

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.

- 14. Find an integrating factor and solve, (y + x) dy = (y x) dx.
- 15. Find the real general solution to $x^2y'' + 0.6 xy' + 16.04y = 0$.
- 16. Solve the initial value problem, y'' + 0.4y' + 9.04y = 0, y(0) = 0, y'(0) = 3.
 - 17. Applying Laplace transforms solve, $y(t) \int_0^t (1+\tau) y(t-\tau) d\tau = 1 \sinh t$.
 - 18. Find the type, transform to normal form and solve : $xu_{xx} yu_{xy} = 0$.
 - 19. Find the Fourier series of $f(x) = x^2$ in the interval $(-\pi, \pi)$. (4×3=12)

SECTION - D

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

- 20. Suppose that in Winter the daytime temperature in a certain office building is maintained at 70°F. The heating is shut off at 10 pm and turned on again at 6 am. On a certain day the temperature inside the building at 2 am was found to be '65°F. The outside temperature was 50° F at 10 pm and had dropped to 40°F by 6 am. What was the temperature inside the building when the heat was turned on at 6 am?
- 1) 21. Solve $(D^2 2D + 1)y = \frac{e^x}{x^3}$, by the method of variation of parameters.
- Use the Laplace transform to solve the initial value problem, $y'' 2y' + 2y = \cos t$; y(0) = 1, y'(0) = 0.
 - 23. Find (a) the Fourier cosine series and (b) the Fourier sine series of the function,

$$f(x) = \begin{cases} 1 & 0 < x < 1 \\ 2 & 1 < x < 2 \end{cases}$$
 (2x5=10)