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Exp. No.1.1 

Flywheel- Moment of inertia 

Aim: To find the moment of inertia of a fly wheel. 

Apparatus: The flywheel, weight hanger with slotted weights, stop clock, metre scale etc. 

Theory: A flywheel is an inertial energy-storage device. It absorbs 

mechanical energy and serves as a reservoir, storing energy during the 

period when the supply of energy is more than the requirement and 

releases it during the period when the requirement of energy is more than 

the supply. The main function of a fly wheel is to smoothen out variations 

in the speed of a shaft caused by torque fluctuations. Many machines have 

load patterns that cause the torque to vary over the cycle.  Internal 

combustion engines with one or two cylinders, piston compressors, punch 

presses, rock crushers etc. are the systems that have fly wheel. 

A flywheel is a massive wheel fitted with a strong axle projecting on 

either side of it. The axle is mounted on ball bearings on two fixed 

supports as shown in fig.b. There is a small peg inserted loosely in a hole 

on the axle. One end of a string is looped on the peg and the other end 

carries a weight hanger. A pointer is arranged close to the rim of the flywheel. To do the 

experiment, the length of the string is adjusted such that when the descending mass just touches 

the floor, the peg must detach the 

axle. Now a line is drawn on the 

rim with a chalk just below the 

pointer. The string is then attached 

to the peg and the wheel is rotated 

for a known number of times ‘n’ 

such that the string is wound over 

‘n’ turns on the axle without 

overlapping. Now the mass m is at 

a height ‘h’ from the floor. The 

mass is then allowed to descend 

down. It exerts a torque on the 

axle of the flywheel. Due to this 

torque the flywheel rotates with an 

angular acceleration. Let  be the 

angular velocity of the wheel 

when the peg just detaches the axle and W be the work done against friction per one rotation, 

then by law of conservation of energy, 
 

                 mgh =  
2 21 1

Iω mv nW
2 2

        (1) 

Let N be the number of rotations made by the wheel before it stops. Since the kinetic 

energy of rotation of the flywheel is completely dissipated when it comes to rest, we can write, 

               NW =  
21

Iω
2
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Or,                    W =  
2Iω

2N
         (2) 

Using eqn.2 in eqn.1, 

    mgh =  
2

2 21 1 Iω
Iω mv n

2 2 2N
   =   2 2 21 n 1

Iω 1 mr ω
2 N 2

 
  

 
  

           I =   2

2

Nm 2gh
r

N n ω

 
 

  
       (3) 

where, ‘r’ is the radius of the axle. To determine ‘’ we assume that the angular retardation of 

the flywheel is uniform after the mass gets detached from the axle. Then, 
 

 Average angular velocity =  
Total angular displacement

Time taken
 

   
ω 0

2


 =  

2πN

t
 

         =  
4πN

t
        (4)  

Procedure: To start with the experiment one end of the string is looped on the peg and a 

suitable weight is placed in the weight hanger. The fly wheel is rotated ‘n’ times such that the 

string is wound over ‘n’ turns on the axle without overlapping. The flywheel is held stationary at 

this position. The height ‘h’ from the floor to the bottom of the weight hanger is measured. The 

flywheel is then released. The mass descends down and the flywheel rotates. Start a stop watch 

just when the peg detaches the axle. Count the number of rotations ‘N’ made by the wheel during 

the time interval between the peg gets detached from the axle and when the wheel comes to rest. 

The time interval ‘t’ also is noted. The experiment is repeated for same ‘n’ and same mass ‘m’. 

The average value of ‘N’ and ‘t’ are determined. The moment of inertia ‘I’ is calculated using 

equations (3) and (4). The entire experiment is repeated for different values of ‘n’ and ‘m’ and 

the average value of I is calculated. 

 Ensure that the length of the string is such that when the mass just touches the floor the 

peg gets detached from the axle. 

 In certain wheels the peg is firmly attached to the axle. In such case, one end of the string 

is loosely looped around the peg such that when the mass just touches the floor the loop 

gets slipped off from the peg.  

 ‘m’ is the sum of mass of weight hanger and the additional mass placed on it.  

Observation and tabulation 

To determine the radius of the axle using vernier calipers 

 Value of one main scale division (1 m s d) =  ………. cm 

 Number of divisions on the vernier scale, x =  ………. 

  Least count,      L. C =  
Value of one main scale division

Number of divisions on the vernier scale
 = 

1 m s d

x
= ……. cm 
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Trial No. M S R 

cm 

V S R D = M S R + V S RL C 

cm 

Mean diameter D  

cm 

     

    

    

    

    

 

Diameter of the axle         D =  …….. cm =  ……… m 

Radius of the axle        r =  
D

2
 =  …….. m 

Determination of moment of inertia 
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No. of rotations of 

the wheel after the 

detachment of the 

peg from the axle 

‘N’ 

Time interval in 

between the detachment 

of the peg and when the 

wheel comes to stop, ‘t’ 

sec. 

 

 

 

 

 

4πN
ω

t


 

 

 

 

 

 

I 

kg.m
2 

 

 

 

1 

 

 

 

2 

 

 

Mean 

N 

 

 

 

1 

 

 

 

2 

 

 

Mean t 

sec 

           

           

           

           

           

           

 

Result 
 Moment of inertia of the given flywheel,   I =  ………. kg.m

2
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Exp.No.1.2 

Compound pendulum- To find ‘g’ and radius of gyration 

Aim: To determine (a) the value of acceleration due to gravity ‘g’ at the given place by using a 

compound pendulum, (b) the radius of gyration and hence the moment of inertia of the 

compound pendulum about an axis passing through its centre of mass. 

Apparatus: The compound pendulum, stop watch, etc. 

Theory 

A compound pendulum, also known as a physical pendulum, is a body of any arbitrary 

shape pivoted at any point so that it can oscillate in a plane when its centre of mass is slightly 

displaced on one side and is released.  

In the figure S is the suspension centre and G is the centre of gravity of the body. Let the 

vertical distance SG be l when the body is in its normal position of rest. If the body is oscillated 

through an angle θ about an axis passing through S and perpendicular to the vertical plane of the 

body, its centre of gravity takes the position G’. The torque acting on the body due to its weight 

mg is given by, 
 

              =  Mg sinθl  

The negative sign indicates that the torque acts opposite to the direction of increase of θ. If I is 

the moment of inertia of the body about the axis of rotation, then the torque is also given as, 
 

                     =   I =  
2

2

d θ
I

dt
 

i.e.  
2

2

d θ
I

dt
 =  Mg sinθl  

If the angular displacement θ is very small, sinθ = θ . Then the 

equation of motion becomes, 

            
2

2

d θ Mg
+ θ

dt I

l
 =   0               (1) 

Eqn.1 shows shat the motion of the pendulum is simple 

harmonic with an angular frequency, 0

Mg
ω

I

l
  . Its period of 

oscillation is given by, 
 

       T = 
0

2π
  
ω

 =  
I

2π
Mgl

    (2) 

Now we define       L =   
I

Ml
    (3) 

Then,                     T =  
L

2π
g

    (4) 

where, L is called the length of an equivalent simple pendulum.  



Practical-1 M C T 7 

If K is the radius of gyration of the compound pendulum about an axis through the centre of 

mass, the moment of inertia is, 
 
       ICM =  MK

2
        (5) 

Applying the parallel axes theorem the moment of inertia around the pivot is given by, 
 

      I =  ICM + Ml
2
 =  MK

2
 + Ml

2 
=   2 2M K l

 
     (6) 

Hence from eqn.2 we get,
 

       T = 
2 2K

2π
g

l

l


 =  

L
2π

g
       (7) 

where,        L =     
I

Ml
 =   

2 2K l

l


       (8) 

Thus, if we know the radius of gyration of an irregular body around an axis through the centre of 

mass, the time period of oscillation of the body for different points of pivoting can be calculated. 

Fig.b shows the graph between the time period T in the Y axis and the distance of the point of 

suspension (axis of rotation) from one end of the bar in the X axis. 

Centres of suspension and oscillation are mutually interchangeable: In fig.a consider the 

point Oon the line joining the centre of suspension ‘S’ and centre of gravity G  at a distance 
2K

l
l

 
 

 
 from ‘S’ or 

2K

l
 from G . This point is called the centre of oscillation. An axis passing 

through the centre of oscillation and parallel to the axis of suspension is called axis of oscillation. 

Let S G= l1 and G O = l2=  
2

1

K

l
 . 

Let T1 be the time period with ‘S’ as 

point of suspension. Now we find out 

the period of oscillation T2 with O  

as point of suspension. Then, 
 

      T2 =  
2 2

2

2

4π K

g
l

l

 
 

   

But,        l2 =   
2

1

K

l
   (9) 

Then,     T2 =  
2 2

1

1

4π K

g
l

l

 
 

 
  

   =   T1 

Thus the axes of suspension and oscillation are interchangeable. And if ‘L’ is the distance 

between them we can write, 
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         L =      
2

1

1

K
l

l
  =  

2

2

2

K
l

l
       (10) 

And          T =    T1  =   T2 =  
L

2π
g

 

Thus by knowing L and T value of acceleration due to gravity g can be obtained as, 

         g =  
2

2

4π L

T
        (11) 

To determine L and K: Draw the graph between the time period T in the X axis and the 

distance of the point of suspension (axis of rotation) from one end of the bar as shown in fig.b. 

From the graph, for a given T, 
 

         L =  
PR QS

2


       (12) 

By eqn.8,       K = 1 2l l  =  PA AR  =  QA AS  

Thus,         K =  
PA AR QA AS

2

  
   (13) 

Procedure: In our experiment we use a symmetric compound pendulum as shown 

in fig.c. The compound pendulum is suspended on a knife edge passing through the 

first hole near one of the ends, say, A. The pendulum is pulled aside slightly and is 

released so that the pendulum oscillates with small amplitude. The time for 20 

oscillations is determined twice and the average is calculated. From this, the period 

of oscillation T of the symmetric pendulum is found out. Similarly, the time periods 

of the pendulum by suspending the pendulum in successive holes till the hole near 

the other end B. (For holes beyond the centre of gravity, the pendulum gets 

inverted). The distances ‘x’ from the end A to the edge of the holes at which the 

knife edge touches are measured by a metre scale.  

The centre of gravity of the bar is determined by balancing it on a knife edge. 

The position of centre of gravity from the end A is also measured. The mass of the 

bar (including the knife edge if it is attached to the bar) is measured using a balance. 

 A graph is drawn taking the distances ‘x’ of the holes from the end A along the X-axis and 

the time periods T along the Y-axis as shown in fig.b.  

To determine the length of the equivalent simple pendulum and the radius of gyration K 

about the axis passing through the centre of gravity from the graph, draw lines parallel to the X-

axis for particular values of T. Determine PR and QS and from these L is calculated. Also 

determine PA, AR, QA and AS and from these K is calculated. Finally, using eqn.11 the value of 

acceleration due to gravity ‘g’ is calculated and the moment of inertia of the bar about an axis 

through the centre of mass (centre of gravity) using eqn.5. We can also calculate the moment of 

inertia of the bar about an axis at a distance ‘a’ from the end A and perpendicular to the bar by 

applying the parallel axes theorem, 
2 2I MK Ma  . 

 Distances ‘x’ from the end A depends on how the knife edge is fixed in the holes. It may 

be the top end, bottom end or centre of the hole. The inversion of the bar also is taken 

into account in this case. 

Fig.c 

A 

B 
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Observation and tabulation 
 Mass of the bar, M =  …….. kg. 

  Position of centre of gravity G from the end A =  ……. m 

Distance ‘x’ from 

the end A in metre 

Time for 20 oscillations in sec. Period T 

sec 1 2 Mean 

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

To determine acceleration due to gravity (Observations from graph) 

Sl.No. T 

sec 

PR 

m 

QS 

m 
PR QS

L
2


  m 

2

2

L
ms

T


 Mean 

2

2

L
ms

T


 2 2

2

L
g 4π  ms

T

 
  

 
 

        

      

      

      

To find radius of gyration and moment of inertia (Observations from graph) 

Sl.No. T 

sec 

PA 

m 

AR 

m 

QA 

m 

AS 

m 
PA AR QA AS

K m
2

  
  

Mean K 

m 

2

CMI MK  

kg.m
2 

         

       

       

       
 

Result 

 Acceleration due to gravity at the place,        ‘g’ =  ……… 
2ms  

 Radius of gyration about an axis through the centre of mass,     K =  ………. m 

  Moment of inertia about an axis through the centre of mass,   ICM =  ………. kg.m
2
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Exp.No.1.3 

Surface Tension by capillary rise method 

Aim: To determine the surface tension of the given liquid by capillary rise method. 

Apparatus: Beaker with the given liquid, capillary tube, travelling microscope, etc. 

Theory 

When a capillary tube of inner radius ‘r’ is dipped in 

a liquid of surface tension ‘T’ the liquid rises through the 

tube to a certain height. This is known as capillary rise. If  

is the angle of contact of the liquid with the capillary tube, 

the height of the capillary rise is such that the upward surface tension force is equal to the weight 

of the liquid column in the tube. Let ‘h’ be the height from the liquid surface in the beaker to the 

liquid meniscus in the capillary tube. Then, 
 

        2πrTcosθ  =  
2 31

πr hρg πr ρg
3

        (1) 

The second term in the R H S is the weight of the liquid in the meniscus portion, which is 

negligibly small.  

         T =  

r
h rρg

3

2cosθ

 
 

 
       (2) 

We usually use the capillary rise method to find out the surface tension of liquid that wets the 

glass and have negligibly small angle of contact. Thus, 
 

          T =  

r
h rρg

3

2

 
 

 
        (3) 

The density of the liquid can be determined by Hare’s apparatus as shown in the fig.b. Let 

hw is the height of the water column and hl is the height of the liquid column, then, 
 
Atmospheric pressure,          H = P + hwwg =  P + hlg     

h 

Fig.a 
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i.e.    hww =  hl 

          =  w
w

h
ρ

h l

 = 
3Height of water column

1000 kgm
Height of liquid column

             (4) 

Procedure: The capillary tube and the pointer are arranged as shown in the fig.a. Raise and 

lower the beaker and check that the meniscus also raises or lowers correspondingly. Otherwise, 

clean the tube and is again checked that the tube is completely wet with the liquid. The pointer is 

arranged such that its tip just touches the liquid surface in the beaker. Then the travelling 

microscope is focused to see the liquid meniscus. (It is better to place the microscope close to the 

tube and is then pulled back till the tube is seen clearly and then it is raised or lowered to see the 

meniscus). The horizontal wire of the microscope is made to coincide with the meniscus and the 

readings on the vertical scale are noted. Now the beaker is removed and the microscope is 

adjusted to see the tip of the pointer. By adjusting the vertical tangential screw the tip of the 

pointer is made to coincide with the horizontal cross wire. The reading on the vertical scale is 

noted. The difference between the two vertical scale readings gives the capillary rise. The 

experiment is repeated after the beaker is placed in another level.  

To find the diameter of the bore of the capillary tube it is arranged horizontally. The 

travelling microscope is adjusted to see the bore clearly. The horizontal tangential screw of the 

microscope is adjusted such that the vertical cross wire is tangential to 

the left side of the bore. The reading on the horizontal scale is noted. The 

vertical wire is then made to coincide with the right side of the bore and 

the reading on the horizontal scale is again noted. The difference 

between the readings gives the diameter in the horizontal direction. 

Similarly by adjusting the vertical tangential screw the horizontal cross 

wire is made to coincide with the top and bottom and the corresponding 

readings on the vertical scale are noted. The difference between the 

readings gives the vertical diameter. The average diameter and hence the 

radius of the bore is calculated. 

The density of the given liquid is determined by Hare’s apparatus. The beakers containing 

the given liquid and water are arranged as shown in fig.b. The height of the liquid column and 

the height of the water column are determined and the density is calculated using eqn.4.  

Finally, the surface tension of the liquid is calculated using eqn.3. 

 The interior of the tube must be clean. It is free from any surface contamination. When 

the beaker is raised or lowered the liquid meniscus also is raised or lowered 

correspondingly. Otherwise clean the tube. 

 Ensure that there are no air bubbles inside the capillary tube. 

 Ensure that the pointer just touches the water surface before taking the meniscus reading. 

 Ensure that while using Hare’s apparatus hw is the height from the water surface in the 

beaker to the meniscus and not the scale reading against the meniscus. Also hl is the 

height from the liquid surface to the meniscus.  

Observation and tabulation 

 Value of one main scale division (1 m s d) =  …….. cm 

 Number of divisions on the vernier scale, n =  …….. 

 Least count ( LC) = 
Value of one main scale division

Number of divisions on the vernier 
=  

1 m s d

n
 =  …… cm 

Fig.c 

D 
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Determination of capillary rise 

Trial 

No. 

Reading against the liquid meniscus Reading against the tip of the pointer Capillary 

rise  

h = ab 

cm 

M S R 

cm 

V S R Total reading 

‘a’ cm 

M S R 

cm 

V S R Total reading 

‘b’ cm 

1        

2        

3        

4        

           Mean ‘h’ =   ……. cm 

 

Determination of radius of the capillary tube 

 

Mode 

Reading corresponding to 

Left/top 

Reading corresponding to 

Right/bottom 

Diameter 

‘D’ 

cm M S R 

cm 

V S R Total reading 

cm 

M S R 

cm 

V S R Total reading 

cm 

Horizontal        

Vertical        

          Mean ‘D’ =  ……. cm 

 

Determination of density of liquid using Hare’s apparatus 

  Density of water, w =  1000 kg/m
3 

Trial No. Height of liquid column, 

hl cm 

Height of water column, 

hw cm 
w

w

h
ρ ρ

hl

   kg/m
3 

1    

2    

3    

4    

5    

         Mean  =   …………… kg/m
3 

 

        Surface tension of the given liquid, T =      

r
h rρg

3

2

 
 

 
  =   …………. 

      =  ……… N/m   

 

Result 
 The surface tension of the given liquid =  …….. N/m 
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Exp.No.1.4 

Young’s modulus of the material of bar-Non-uniform bending 
(using pin & microscope) 

 
Aim: To determine the Young’s modulus of the material of a bar by subjecting it to non-

uniform bending and measuring the depression at centre of the bar by using pin and microscope.  

Apparatus: A long uniform bar, two knife edges, a travelling microscope, pin, weight hanger 

and slotted weights, etc. 

Theory: Let a beam AB be supported by two knife-edges K1 and K2 and loaded at the middle C 

with a weight W = Mg as shown in Fig.(a). The length of the beam between the knife-edges is l 

and the reaction at each knife-edge is W/2, acting upwards. The depression is maximum at the 

middle. Let this maximum depression be δ. Since the middle of the beam is almost horizontal, 

the beam may be considered to be equivalent to two inverted cantilevers CA and CB, each of 

length 2l and carrying an upward load W/2.  Therefore, the maximum depression δ of C below 

the knife-edges is equivalent to the elevation of A and B from the lowest position C. 

Now, consider a vertical section P, distant x from C. Then, the moment of the deflecting 

couple on the section PB is  

         
W

.PB
2

 = 
W

  x
2 2

l 
 

 
 

In the equilibrium condition, this deflecting couple is 

balanced by the bending moment. 
 

     
YI

R
 =   

W
  x

2 2

l 
 

 
   (1) 

where, Y is the Young’s modulus, R is the radius of 

curvature at any point on the bent beam and I is the 

geometrical moment of inertia. For a beam with 

rectangular cross-section, the geometrical moment of 

inertia
3bd

I  =  
12

, where b is the breadth and d is the 

thickness of the bar. For a circular beam of radius r, it is, 
4π r

I  =  
4

 

If y is the elevation of the section P above C, the 

radius of curvature of the neutral axis at this section is 

given by, 

      
1

R
 =    

2

2

d y

dx
 

Substituting this value of 1/R in eqn.1, 

W/2 

W 

l 

W/2 

A B C 

K1 K2 

Fig.a 

Y
 a

x
is

 

 

 

 

x 
C W/2 

 

W/2 

 
l/2 

 

B 

 

  y 

 X axis 

 Fig.b 

 

P 
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2

2

d y
YI

dx
 =    

W
  x

2 2

l 
 

 
 

Or,             
2

2

d y

dx
 =     

W
  x

2YI 2

l 
 

 
       (2) 

On integration we get,    
dy

dx
 =     

2

1

W x
x     +   C

2YI 2 2

l 
 

 
 

where C1 is the constant of integration. Since x = 0 and 
dy

= 0
dx

at C (i.e. at l = 0), C1 = 0. 

Therefore,   
dy

dx
 =     

2W x
x  

2YI 2 2

l 
 

 
 

Integrating the expression again, we get 

        y =     
2 3

2

W x x
     +   C

2YI 2 2 6

l 
 

 
 

where, C2 is a constant of integration. Since y = 0 at x = 0, C2 = 0. 

At the free end, x =
2

l
 and if the corresponding elevation y = δ, we can write, 

        =     
2 3W
  

2YI 2 8 48

l l l 
  

 
 

Or,       =    
3W

48YI

l
 =   

3Mg

48YI

l
            (3) 

For a beam of rectangular cross-section, 
3bd

I =
12

 

Then,        =    
3

3

W

4bd Y

l
 =    

3

3

Mg

4bd Y

l
           (4)  

Or,       Y =    
3

3

Mg

4bd δ

l 
 
 

        (5) 

For a beam of circular cross-section, 
4π r

I =
4

 and hence, 

         =    
3

4

W

12Yπr

l
 =    

3

4

Mg

12Yπr

l
           (6) 

Or,        Y =  
3

4

Mg

12πr δ

l 
 
 

        (7) 

Procedure: The given bar is supported symmetrically on two knife edges, such that the length 

of the bar in between the knife edges is l, say 40 cm, as shown in fig.c. (If a metre scale is used 

as the bar, we can place the bar on the knife edges such that they are at 30 cm and 70 cm marks). 

The weight hanger is suspended at the midpoint of the bar (in between the knife edges). A pin is 
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fixed vertically at the midpoint of the bar. A travelling microscope is focused such that the 

horizontal wire is at the tip of the pin.  

Now the bar is 

brought into an elastic 

mood by loading and 

unloading it step by 

step several times. A 

sufficient dead load is 

placed in the weight 

hanger. Let ‘w0’ be 

the mass of weight 

hanger and the 

additional dead load 

placed in it. The microscope is focused such that the tip of the pointer is at the horizontal wire. 

(The microscope is initially placed very close to the pin. It is then pulled back till the pin is seen 

clearly. Then the rack and pinion arrangement is adjusted to see the pin very clearly. The 

microscope is raised or lowered by adjusting the main screw and tangential screws to make the 

horizontal wire to coincide with the tip of the pin). The reading on the vertical scale is taken. 

Now the slotted weights are added to the weight hanger in steps of mass ‘m’. In each case the 

microscope is made to coincide with the tip of the pin and the readings are taken. Then the mass 

in the weight hanger is unloaded in steps and again the readings are noted. From these readings 

the average depression  is found out for a particular mass M, say M = 4m =200 gm, and 
3

δ

l
 is 

calculated. The experiment is repeated for different values of ‘l’ and the mean value of 
3

δ

l
 is 

determined.  

The breadth ‘b’ of the bar is determined with a vernier calipers and the thickness ‘d’ by a 

screw gauge. The Young’s modulus of the bar is calculated using eqn.5. 
 

Observation and tabulation 

To find breadth of the bar using vernier calipers 

 Value of one main scale reading of the vernier calipers (1 m s d) =  …….. cm 

 Number of divisions on the vernier scale        n1 =  …….. 

 Least count (LC) of the vernier calipers =    
1

1 m s d

n
 =  …… cm 

Trial No. M S R 

cm 

V S R b = M S R + V S RL C 

cm 

Mean breadth b  

cm 

     

    

    

    

    

 

W 

l 

A 

B 

Fig.c 
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To find the thickness of the bar using screw gauge 

 Distance moved by the screw tip for 5 rotations of the head =  ……… mm 

 Pitch of the screw, P =  
Distance moved by the screw tip

Number of rotations of the head
 =  ……… mm 

 Number of divisions on the head scale =  ……… 

 Least count (L C) =  
Pitch

Number of divisions on the head scale
 =  ……. mm 

 Zero coincidence =  …….. ;    Zero error  =  ……. 

 Zero correction =  …….. 

Trial No. P S R 

‘x’ mm 

Observed 

H S R 

Corrected 

H S R ‘y’ 

Thickness 

d x y LC    mm 

Mean d 

mm 

1      

2     

3     

4     

5     
 

To find 
3

δ

l
 

 Value of one main scale reading of the microscope (1 m s d) =  …….. cm 

 Number of divisions on the vernier scale         n =  …….. 

 Least count (LC) of the travelling microscope =    
1 m s d

n
 =  …… cm 

 Mass for which depression is calculated,  M =  4m =  0.2 kg. 

L
en

g
th

 

‘l
’ 

in
 m

 

S
u

sp
en

d
ed

 L
o

ad
 

in
 k

g
. 

Microscope readings 

M
ea

n
 r

ea
d

in
g
 

cm
 

D
ep

re
ss

io
n

 f
o
r 

th
e 

m
as

s 
M

=
4

m
 

‘
’ 

in
 c

m
 

M
ea

n
 

 

cm
 

 
3

δ

l 
 
 

m
2
 

loading Unloading 

M
 S

 R
 

cm
 

V
 S

 R
 

T
o

ta
l 

 

cm
 

M
 S

 R
 

cm
 

V
 S

 R
 

T
o

ta
l 

cm
 

 W0           

W0 + m        

W0 + 2m        

W0 + 3m        

W0 + 4m         

W0 + 5m         

W0 + 6m         

W0 + 7m         
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 W0           

W0 + m        

W0 + 2m        

W0 + 3m        

W0 + 4m         

W0 + 5m         

W0 + 6m         

W0 + 7m         

 W0           

W0 + m        

W0 + 2m        

W0 + 3m        

W0 + 4m         

W0 + 5m         

W0 + 6m         

W0 + 7m         

          Mean 
3

δ

l
 =  …….m

2
 

 Young’s modulus of the material of the bar,        Y =   
3

3

Mg

4bd δ

l 
 
 

  =  …… 

        =   …….. Nm
2

  

Result 

 Young’s modulus of the material of the bar,        Y =   …….  Nm
2
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Exp.No.1.5 

Young’s modulus of the material of a bar -Uniform Bending  
(Using optic lever, telescope and scale) 

Aim: To determine the Young’s modulus of the material of the given bar by subjecting it to 

uniform bending and by measuring the elevation using an optic lever, scale and telescope 

arrangement. 

Apparatus: A long uniform bar, two knife edges, an optic lever, scale and telescope 

arrangement, weight hanger and slotted weights, etc. 

Theory 
Consider a beam supported symmetrically on two knife edges A and B and with a length l 

between the knife edges. The beam is loaded with equal weights W = Mg at the ends at equal 

distances p from the knife edges, as shown in Fig.(a). The bar is bent uniformly since it is loaded 

symmetrically at both ends. Let δ be the elevation of the midpoint O of the bar when it is loaded.  

Consider the equilibrium of one half of the bar, say OC. The only external forces acting on 

this section of the beam are the load W acting vertically downwards at C and its reaction W 

acting vertically upwards at the knife edge A. The distance between these two forces is p. These 

two forces constitute a couple, whose moment is given by W.p. In the equilibrium condition, this 

moment is balanced by the bending moment
YI

R
. 

                W.p  =  
YI

R
  (1) 

The bar bends into the arc of a circle as shown in Fig. (b). If R is the radius of curvature of the 

neutral surface and δ is the elevation, 
 

      2R δ δ  =   .
2 2

l l
    or           

22Rδ  δ  =  
2

4

l
 

Since δ
2
 is negligibly small compared to 2Rδ, we 

can write 

   2Rδ  =  
2

4

l
    or  R =   

2

8δ

l
 

Substituting for R in eqn.1, 

 W.p  =      
2

YI

8δl
 =    

2

8YI
δ

l
 

          =    
2Wp

8YI

l
          

For a bar of rectangular cross section, since 
3bd

I =
12

 

        =     
2

3

Wp

bd
8Y

12

l
 =    

2

3

12Wp

8Ybd

l
 =   

2

3

3Wp

2bd Y

l
 

l 

A B 

W W 

W W 

p p O 

C D 

Fig.a 

 

l/2 l/2 
C D 

O 

2
R


 

Fig.b 
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 Or,      Y =    
2

3

3Wp

2bd δ

l
 =   

2

3

3Mgp

2bd δ

l
    (3) 

Similarly, for a bar of circular cross section, 
4π r

I =
4

 

   =     
2

4

Wp

π r
8Y

4

l
 =   

2

4

Wp

2πr Y

l
    

 Or,     Y =      
2

4

Wp

2πr δ

l
 =   

2

4

Mgp

2πr δ

l
  (4) 

Principle of optic lever: In this experiment we 

determine the elevation ‘’ by using an optic lever, scale 

and telescope arrangement. The principle behind it is 

that, if the mirror turns through an angle  the reflected 

ray turns through an angle 2. The optic lever consists of 

a triangular frame with three legs and a mirror strip is 

fixed perpendicularly on it as shown in fig.c. The optic 

lever is placed with its front leg ‘A’ at the midpoint of 

the experimental bar arranged on the knife edges. The back legs B and C rest on another bar 

placed behind the experimental bar. A scale and telescope is arranged at a distance D, say 1 m, 

from the mirror of the optic lever such that the image of the scale is obtained on the cross wire of 

the telescope. Let s1 be the scale reading that coincides with the horizontal wire. Then the bar is 

loaded symmetrically. Due to the elevation  of the bar, the optic lever and hence its mirror turns 

through an angle ‘’. Since the reflected ray turns through an angle 2, we get another scale 

reading s2 that coincides with the horizontal wire of the telescope. Then, 
 
  Shift in scale reading when the bar is loaded,         s =  s2  s1   

Let ‘a’ be the length of the line joining the front leg and the midpoint of the line joining the back 

legs of the optic lever.  

 Angle turned by the optic lever due to the elevation  of the bar,              =  
δ

a
 

 Angle turned by the reflected ray from the mirror of the optic lever,     2 =  
s

D
 

 i.e.        
δ

a
 =  

s

2D
     

           =  
as

2D
        (5) 

Using eqn.5, eqns.3 and 4 become, 

For rectangular bar,          Y =  
2

3

3MgD p

abd s

l 
 
 

           (3a) 

For cylindrical bar,      Y =   
2

4

MgD p

πr a s

l 
 
 

       (4a) 

a 

A 

A 

B 

B 
C 

C 
N N 

N 

B 

C 

B 

C 

A 

A 
A 

 

2 

 

Fig.c 

A 

M 
M 

a 

D 

s1 

s 

s2 

2 

M 
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Procedure: The given bar is 

supported symmetrically on two 

knife edges with length of the 

bar in between the knife edges 

is ‘l’. For uniform bending of 

the bar, equal weights are 

suspended at equal distances, 

‘p’ from the knife edges. An 

optic lever is arranged behind 

the bar such that its front leg is 

at the midpoint of the bar and 

the two back legs are on another 

bar arranged as shown in the 

fig.d. (Ensure that the two bars 

do not touch each other). The 

scale and telescope arrangement 

is placed in front of the bar with 

the distance in between the 

scale and the mirror D is greater 

than or equal to 1 m. The 

telescope can be focused as follows.  

 Looking above the edges of the telescope with one eye (other eye closed) the stand on 

which the telescope fixed is moved sideways till the image of the scale is seen clearly 

on the mirror of the optic lever. 

 Looking through the edges in the right side of the telescope with one eye, adjust the 

leveling screws (vertical and sidewise) till the telescope is exactly towards the mirror 

strip of the optic lever. 

 Now looking through the eyepiece, the telescope is focused by adjusting the rack and 

pinion arrangement till the clear image of the scale is seen exactly on the cross wires of 

the telescope.  

 Before starting to take reading, ensure that it is possible to get scale readings for the 

minimum and maximum loads.  The scale is raised or lowered if needed. 

Now the bar is brought to elastic mood by loading and unloading in steps for several times. 

Now suitable dead loads are placed in the weight hangers. The scale reading that coincides with 

the horizontal cross wire is noted. Increase the slotted weights in the weight hangers in steps of 

mass ‘m’ and in each case the scale reading is noted. The scale readings are also taken during the 

unloading of the slotted weights. The average shift in scale reading for particular loads, say M = 

4m in each weight hanger, is determined. The entire experiment is repeated for different values 

of l.  

The breadth of the bar is determined by a vernier calipers and its thickness by a screw 

gauge. The length ‘a’ between the front leg and the midpoint of the line joining the back legs is 

determined as follows. The optic lever is pressed on a paper so that the impressions of the three 

legs are obtained on the paper. Construct the triangle with these impressions. Find out the 

midpoint N of the line joining the back legs (refer fig.c). Then measure the distance ‘a’ between 

this point and the point corresponding to the front leg.    

 

l 

A 

B 

W 

W 

p 

Fig.d 

p 
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Observation and tabulation 

  Mass used to increase the load in steps,               m =  …….. kg.  

  Mass for which the elevation is calculated,         M =  4m =  …….. kg. 

Length 

l in m 

P 

m 

D 

m 

Suspended 

load in kg 

Telescope reading in cm Shift in scale reading 

‘s’ for a mass M=4m 

cm 

Mean 

‘s’ in 

m 

2Dp

s

l 
 
 

m
3
 

loading Unloading Mean 

   W0       

W0 + m    

W0 + 2m    

W0 + 3m    

W0 + 4m     

W0 + 5m     

W0 + 6m     

W0 + 7m     

   W0       

W0 + m    

W0 + 2m    

W0 + 3m    

W0 + 4m     

W0 + 5m     

W0 + 6m     

W0 + 7m     

   W0       

W0 + m    

W0 + 2m    

W0 + 3m    

W0 + 4m     

W0 + 5m     

W0 + 6m     

W0 + 7m     

           Mean    ……. 

To find breadth of the bar using vernier calipers 

 Value of one main scale reading of the vernier calipers (1 m s d) =  …….. cm 

 Number of divisions on the vernier scale        n =  …….. 

 Least count (LC) of the vernier calipers =    
1 m s d

n
 =  …… cm 

Trial No. M S R 

cm 

V S R b = M S R + V S RL C 

cm 

Mean breadth b  

cm 
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To find the thickness of the bar using screw gauge 

 Distance moved by the screw tip for 5 rotations of the head =  ……… mm 

 Pitch of the screw, P =  
Distance moved by the screw tip

Number of rotations of the head
 =  ……… mm 

 Number of divisions on the head scale =  ……… 

 Least count (L C) =  
Pitch

Number of divisions on the head scale
 =  ……. mm 

 Zero coincidence =  …….. ;    Zero error  =  ……. 

 Zero correction =  …….. 

Trial No. P S R 

‘x’ mm 

Observed 

H S R 

Corrected 

H S R ‘y’ 

Thickness 

d x y LC    mm 

Mean d 

mm 

1      

2     

3     

4     

5     
 
 

To determine ‘a’  
   

 

 

 

 

 

Distance between the front leg and the midpoint of the line joining the back legs,   

         a =  …….. m 

Young’s modulus of the material of the bar,        Y =  
2

3

3Mg Dp

abd s

l 
 
 

    =  …………. 

       =  ……… Nm
2

 

Result 
 Young’s modulus of the material of the bar,        Y =  ……… Nm

2
 

 

 

 

 

 

a = … 
A 

B 

C 

N 
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Exp.No.1.6 

Torsion pendulum  
(Moment of inertia of a disc and rigidity modulus) 

Aim: To determine the moment of inertia of a given disc and the rigidity modulus of the 

material of the wire used to suspend the disc by the method of torsional oscillations. 

Apparatus: The torsion pendulum consisting of the suspension wire and the heavy disc, two 

identical masses, stop watch etc. 

Theory: A heavy body, say a disc, having a moment of inertia I is suspended by a metallic wire 

whose one end is fixed on a rigid support. The body is twisted slightly by applying a torque and 

is released. Then the body executes torsional oscillations. This arrangement is called a torsion 

pendulum. Using the law of conservation of energy we can show that the torsional oscillations 

are simple harmonic and find out the period of oscillations.  

The total energy of the system is equal to the sum of the kinetic energy of rotation of the 

body and the work done in twisting the wire. 

i.e.              E =   
2 21 1

Iω + Cθ
2 2

  =  

2

21 dθ 1
I + Cθ

2 dt 2

 
 
 

  

Since the total energy is conserved     
dE

dt
 =   0 

Thus,          0 =   
2

2

1 dθ d θ 1 dθ
2I + 2Cθ

2 dt dt 2 dt

    
    

    
 

Dividing throughout by 
dθ

dt

 
 
 

 we get,  

                
2

2

d θ
I + Cθ

dt
 =   0 

i.e.      
2

2

d θ C
+ θ

dt I
 =   0  

Or,     
2

2

d θ

dt
 =  

C
θ

I
  

That is, the angular acceleration is proportional to 

angular displacement from the equilibrium position and is opposite to it. Hence the oscillations 

of the torsion pendulum are simple harmonic. Comparing with the standard equation for a simple 

harmonic motion 
2

2

2

d y
 +  ω y  =  0

dt
 we get, 

2
 =  

C

I
 

Thus the period of oscillation ,       T =  
2π

ω
 =  

2π

C

I

  =   
I

2π
C

 

where, C = 
4π nr

2l
is the couple per unit twist of the suspension wire and I the moment of inertia 

of the suspended body. 

 

θ 

 

l l 

R 

r 

Fig.a 

Fig.b 
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Determination of rigidity modulus of a wire 

Method (1): To determine the rigidity modulus of the material of a wire a torsion pendulum is 

arranged. It consists of a heavy disc suspended by a thin uniform wire whose rigidity modulus is 

to be determined. Length between the chucks is adjusted to a suitable value as shown in the fig.a. 

Now the disc is rotated through a small angle and is released. The period of oscillation T0 is 

determined. The radius of the wire ‘r’, mass of the disc ‘M’ and the radius of the disc ‘R’ are also 

determined. The rigidity modulus of the material of the wire is calculated as follows. 

The period of oscillation  T0 =   
I

2π
C

 

Squaring and rearranging we get,  C =  
2

2

0

I
4π

T
  

Substituting for couple per unit twist C we get, 

    
4π nr

2l
 =  

2

2

0

I
4π

T
 

   Rigidity modulus        n =   
4 2

0

8πI

r T

l 
 
 

         (1) 

where, I is the moment of inertia of the disc that can be calculated using  I =  
2MR

2
 (2) 

Method (2) - using identical masses: In this method two identical masses (say, cylindrical in 

shape) of mass ‘m’ and moment of inertia I0 about its own axis, are placed at equal distances d1 

from the suspension wire as shown in fig.c. Let I be the moment of inertia of the disc and I1 be 

the moment of inertia of the system. Applying parallel axes theorem, the moment of inertia of the 

identical masses about the axis through the suspension wire is 2

0 12I 2md . Hence the moment of 

inertia of the system, 

          I1 =  2

0 1I 2I 2md      (3) 

If the identical masses are placed at distances d2 from the wire, the 

moment of inertia of the system is given by, 
 

         I2 =  2

0 2I 2I 2md      (4) 

 2 1I I  =   2 2

2 12m d d     (5) 

Let T0 be the period of oscillations of the torsion pendulum without the 

identical mass and T1 and T2 be the corresponding periods with identical 

masses at distances d1 and d2, respectively. Then, 
  

       2

0T  =  
2 I

4π
C

     (6) 

      2

1T  =  
2 1I4π

C
 

Or,        I1 =  
2

1

2

CT

4π
     (7) 

m 

l 

d1 d1 

m 

Fig.c 
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And,       I2 =  
2

2

2

CT

4π
        (8) 

 2 1I I  =   2 2

2 12

C
T T

4π
        (9) 

From eqns. 5 and 9, 

     
2

C

4π
 =  

 
 

2 2

2 1

2 2

2 1

2m d d

T T




       (10) 

Using eqn.10 in eqn.6, we get, 

         I =   
 

2
2 2 0
2 1 2 2

2 1

T
2m d d

T T



      (11) 

By eqn.6,   C =    2

2

0

I
4π

T
 =  

 
 

2 2 2

2 1

2 2

2 1

8π m d d

T T




 

i.e.  
4π nr

2l
 =  

 
 

2 2 2

2 1

2 2

2 1

8π m d d

T T




 

       n =  
 2 2

2 1

4 2 2

2 1

16πm d d

r T T

l  
 

 
      (12) 

Procedure: A reference line is drawn on the disc along its diameter. The torsion pendulum is 

set for a desired length ‘l’ in between the two chucks, one on the clamp and the other on the disc. 

A pointer is arranged close to the disc. This helps to count the oscillations. The disc is twisted 

slightly and is released. The pendulum executes torsional oscillations. The time for 20 

oscillations is noted. This is done once again and the average time for 20 oscillations is 

calculated. From this the average time period T0 is determined.  

The two identical masses are now placed (on a diametrical line of the disc) at equal 

distance d1 each from the centre of the disc (from the wire) and the time period T1 of the new 

oscillations is determined as above. Then the distance of the identical mass is changed to d2 and 

the corresponding time period T2 is determined. 

The entire experiment is repeated for different lengths l. The mass of the identical masses 

‘m’ and the mass of the disc ‘M’ are measured with a balance. Radius R of the disc is determined 

by measuring its diameter by a scale. The radius ‘r’ of the suspension wire is determined 

accurately using a screw gauge.  

In method (1), the moment of inertia of the disc is calculated using eqn.2 and the rigidity 

modulus of the material of the suspension wire by eqn.1. 

In the method (2), the moment of inertia of the disc is calculated by eqn.11 and the rigidity 

modulus by eqn.12. 
 

Observation and tabulation 

Mass of the disc,                M =  …….. kg 

Mass of identical masses,  m =  …….. kg 

Radius of the disc,     R =  …….. m 
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To determine ‘I’ and ‘n’ (d1 and d2 fixed) 

l 

m 

Distance of the 

mass ‘m’ from 

the axis in m 

Time for 20 oscillations 

‘t’ sec 
t

T
20

  

sec 

2

0T

l 
 
 

 

ms
2 

 

2

0

2 2

2 1

T

T T
 

2 2

2 1T T

l 
 

 

 

ms
2

 1 2 Mean 

 Disc alone    T0 =     

d1 =     T1 =     

d2 =     T2 =     

 Disc alone    T0 =     

d1 =     T1 =     

d2 =     T2 =     

 Disc alone    T0 =     

d1 =     T1 =     

d2 =     T2 =     

 Disc alone    T0 =     

d1 =     T1 =     

d2 =     T2 =     

 Disc alone    T0 =     

d1 =     T1 =     

d2 =     T2 =     

 Disc alone    T0 =     

d1 =     T1 =     

d2 =     T2 =     

Mean    
 
To measure the radius ‘r’ of the wire using screw gauge 

 Distance moved by the screw tip for 5 rotations of the head =  ……… mm 

 Pitch of the screw, P =  
Distance moved by the screw tip

Number of rotations of the head
 =  ……… mm 

 Number of divisions on the head scale =  ……… 

 Least count (L C) =  
Pitch

Number of divisions on the head scale
 =  ……. mm 

      Zero coincidence =  …….. ;  Zero error =  …….   ;  Zero correction =  …….. 

Trial No. P S R 

‘x’ mm 

Observed 

H S R 

Corrected 

H S R ‘y’ 

Thickness 

d x y LC    mm 

Mean d 

mm 

1      

2     

3     

4     

5     
 
 Radius of the wire, r =  d/2 =   …….. mm 
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Calculations 

Method 1 

 Moment of inertia of the disc,      I =  
2MR

2
 =  …………..  =  ……… kg.m

2
  

 Rigidity modulus of the material of the wire,        n =   
4 2

0

8πI

r T

l 
 
 

 = ………..  

        =  ………. Nm
2

 

Method 2 

 Moment of inertia of the disc,         I =   
 

2
2 2 0
2 1 2 2

2 1

T
2m d d

T T



 

      = 

      =  ………. kg.m
2
     

 Rigidity modulus, n = 
 2 2

2 1

4 2 2

2 1

16πm d d

r T T

l  
 

 
 =      

      =  ………. Nm
2

 

Result 
 Moment of inertia of the disc,                                I =  ………. kg.m

2
     

 Rigidity modulus of the material of the wire,        n =  ………. Nm
2

   

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 



28                                            M C T  Practical I 

Exp.No.1.7 

Rigidity modulus of a material-Static torsion 

Aim: To find out the rigidity modulus of the material of a rod using static torsion apparatus. 

Apparatus: The static torsion apparatus, mirror strip, scale and telescope arrangement, slotted 

weights etc. 

Theory: The static torsion 

apparatus consists of a 

heavy metallic frame that 

can be fixed on a table. The 

experimental rod is passed 

through the hole in the 

frame B. One end of the 

experimental rod is rigidly 

clamped at the frame A. 

The other end P of the rod 

is held tightly by the 

chucks on a metallic wheel 

having radius R. One end 

of a metal wire is fixed on 

a small peg on the wheel. 

The wire can be wound 

clockwise or anti-clockwise 

over the wheel in the groove provided on it. The free end of the wire carries a weight hanger. 

When a mass M is suspended on the wheel, the wheel and hence the rod get twisted through an 

angle . If C is the couple per unit twist of the rod, we can write, 

   MgR =  C =  
4πnr θ

2l
 

where, n is the rigidity modulus of the material of the rod, ‘r’ its radius and ‘l’ is the length of the 

rod from the fixed end of the rod to the point at which the mirror is fixed. Then, 
 

  Rigidity modulus,   n =  
4

2MgR

πr θ

l 
 
 

       (1) 

The angle ‘’ is measured by an indirect method by using a scale and telescope, which employs 

the principle that when the mirror turns through an angle , the reflected ray turns through an 

angle 2. If ‘s’ be the shift in scale reading for a mass ‘M’,  
 

                2 =  
s

D
        (2) 

where, D is the distance between the mirror and the scale. Then,  

          n =  
4

4MgR D

πr s

l 
 
 

            (3) 

A 

M 
l 

R 

P 
B 
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Procedure: The given rod is clamped in the static torsion apparatus. The mirror strip M is 

fixed at a distance ‘l’, say 20 cm, from the end A. The weight hanger carrying the dead load is 

suspended at the free end of the metal wire wound clockwise on the wheel. The scale and 

telescope arrangement is placed at a distance D, say 1 m, from the mirror. The telescope is 

adjusted as mentioned in exp.No.5 so that the scale is seen clearly in the telescope. Then the 

weight hanger is loaded and unloaded in steps several times so as to bring the rod in elastic 

mood. Before starting to take the reading, check that we get the scale readings for the minimum 

and maximum weight in the weight hanger.  

To start to take reading, the weight hanger is loaded with the minimum weight W0. The 

scale reading that coincides with the horizontal wire of the telescope is noted. Then the load is 

increased in steps and in each case the coinciding scale reading is noted. After taking the reading 

for maximum load, the load is decreased in steps and again the corresponding scale readings are 

noted. Now the experiment is repeated after the metal wire is wound over the wheel 

anticlockwise. The entire experiment is repeated for different values of ‘l’.  

Using a piece of twine wound over the wheel, its circumference can be measured and from 

it the radius R can be calculated. The radius ‘r’ of the rod is measured using a screw gauge. 

Finally, the rigidity modulus is calculated using eqn.3.  
  

Observation and tabulation 

To find the radius of the wheel 

 Circumference of the wheel,          L =  ……. cm 

 Radius of the wheel,           R = 
L

2π
 =  …….. m  

To find the radius of the rod using screw gauge 

 Distance moved by the screw tip for 5 rotations of the head =  ……… mm 

 Pitch of the screw, P =  
Distance moved by the screw tip

Number of rotations of the head
 =  ……… mm 

 Number of divisions on the head scale =  ……… 

 Least count (L C) =  
Pitch

Number of divisions on the head scale
 =  ……. mm 

 Zero coincidence =  …….. ;   Zero error  =  ……. 

 Zero correction =  …….. 

Trial No. P S R 

‘x’ mm 

Observed 

H S R 

Corrected 

H S R ‘y’ 

Thickness 

d x y LC    mm 

Mean d 

mm 

1      

2     

3     

4     

5     
 
 Radius of the rod,   r =   d/2 =  …….. mm 
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To find out 
D

s

l 
 
 

 

 Mass used to increase the load in steps,               m =  …….. kg.  

  Mass for which the elevation is calculated,         M =  4m =  …….. kg. 

 
 

 

 

l 

m 

 

 

 

D 

m 

 

 

 

Suspended 

load in 

kg. 

Telescope reading in cm  

 

Mean shift 

‘s’ for  the 

mass 

M = 4m 

metre 

 

 

 

D

s

l 
 
 

 

m 

Clockwise Anticlockwise 

L
o

ad
in

g
  

U
n

lo
ad

in
g

  

M
ea

n
 

S
h

if
t 

fo
r 

a 
m

as
s 

M
 =

 4
m

 

lo
ad

in
g
 

u
n

lo
ad

in
g
 

M
ea

n
 

S
h

if
t 

fo
r 

a 
m

as
s 

M
 =

 4
m

 

  W0           

  W0 + m       

  W0 + 2m       

  W0 + 3m       

  W0 + 4m         

  W0 + 5m         

  W0 + 6m         

  W0 + 7m         

  W0           

  W0 + m       

  W0 + 2m       

  W0 + 3m       

  W0 + 4m         

  W0 + 5m         

  W0 + 6m         

  W0 + 7m         

  W0           

  W0 + m       

  W0 + 2m       

  W0 + 3m       

  W0 + 4m         

  W0 + 5m         

  W0 + 6m         

  W0 + 7m         

            Mean  …….. 

Rigidity modulus of the material of the rod,         n =  
4

4MgR D

πr s

l 
 
 

   =  ………….   

         =  ………. Nm
2

  

Result 

Rigidity modulus of the material of the rod,  n =  ………. Nm
2
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Exp.No.1.8 

Melde’s String- Frequency of a tuning fork 

Aim: To determine the frequency of a tuning fork by Melde’s string arrangement set for (a) 

transverse mode of vibration and (b) longitudinal mode of vibration. 

Apparatus: An electrically maintained tuning fork, sufficient length of string, a light scale 

pan, smooth pulley, weight box, common balance, etc. 

Theory: When the entire string vibrates with one loop, the corresponding frequency of the 

string is called its fundamental frequency. The theory of vibrations of a stretched string shows 

that the fundamental frequency of transverse vibrations in a stretched string of length ‘l’ is  
  

          n =   
1 T

2 ml
         (1) 

where, T is the tension on the string and ‘m’ is its linear density (mass per unit length).  

In the longitudinal mode of vibration, the fundamental frequency of vibration is given by, 

         n =  
1 T

ml




         (2) 

Rh 

L 

Fig.a: Transverse mode 

Rh L 

Fig.b: Longitudinal mode 
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When the stretched string vibrates in unison with the tuning fork, the frequency of the tuning 

fork N is same as the fundamental frequency of the stretched string.  Thus for transverse 

vibrations, if ‘l’ is the length of one loop, the frequency of the tuning fork, 
 

        N =   n =   
1 T

2 ml
   =  

1 Mg

2 ml
 =  

2

g M

4m l

 
 
 

   (3) 

where, M is the sum of the mass of scale pan and the mass placed in it.  

And for longitudinal mode of vibration, the frequency of the tuning fork, 

        N =  n =  
1 T

ml




 =   

1 M g

ml




 =  

2

g M

m l

 
 
 

   (4) 

where, M is the sum of the mass of scale pan and the mass placed in it.  

If L is the length of ‘p’ loops in transverse mode, the length of one loop is given by, 

          l =  
L

p
          (5) 

And, if L is the length of ‘q’ loops in longitudinal mode, the length of one loop is given by, 

         l =  
L

q


           (6) 

Procedure 

(a) Transverse mode: The apparatus is arranged and the connections are made as shown in the 

fig.a. A suitable weight, say 1 or 2 gm, is placed in the scale pan. By adjusting the screw the 

tuning fork is set into vibration. Place one of the two pointers at a well defined node and the 

other pointer at another node. Count the number of loops ‘n’ in between the two pointers and 

measure the length ‘L’ of the string in between the pointers.   

(b) Longitudinal mode: In this case the arrangements are done as shown in the fig.b. Suitable 

weights (500 mg or 600 mg) are placed in the scale pan and the tuning fork is set into vibration. 

The number of loops and the length of the string in between the two pointers are measured.  

 Adjust the total length between the tuning fork and the pulley by moving the tuning fork 

back or forth so that the nodes and hence the loops are well defined. This adjustment is 

needed since the string in between the two fixed ends (one at the tuning fork and the 

other at the pulley) must contain integral number of loops. 

 The mass M is the mass of the scale pan plus the mass placed in it.  

 Use masses of the order of a few grams in the transverse mode and masses of the order of 

milligrams in the case of longitudinal mode. 

 Instead of the apparatus shown in the figure we may use an electromagnet with 

alternating current and a strip of magnetic material to vibrate with the frequency of the 

alternating current used. In this case the length of the strip is to be adjusted to get 

oscillations. 

Measurement of the mass of the scale pan and the linear density of the string: The mass of 

the scale pan is determined by a common balance in the sensibility method. To find the linear 

density (mass per unit length) ‘m’ of the string, take 10 metre length of the same string and find 

out the mass of it using a common balance in the sensibility method.  
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Observations and tabulations 

To find mass of the scale pan M0 and the linear density ‘m’ 

Load in the pans of the balance Turning points Resting 

point 

Sensibility 

1 2

0.01
S

R R



 

Correct weight 

M=W+S(R1R0) 

gm 

left Right (gm) Left (3) Right (2) 

Nil Nil   R0 = …   

Scale pan W   R1 = …   

W + 0.01   R2 = …   

Known length 

(L1) of  string  

W   R1 = …   

W + 0.01   R2 = …   

 

 Mass of the scale pan, M0 =  ………. gm = ………. kg 

 Mass of known length (L1 = …. metre) of the string,    M1 =  …….. kg 

 Linear density,      m =  1

1

M

L
 =  ……. kg/metre 

To find frequency-Transverse mode 

Trial 

No. 

Mass in the 

scale pan  

x gm 

Total mass 

suspended  

M = (M0+x) gm 

Number of 

loops ‘p’ 

Length of p 

loops in cm 

Length of one 

loop l in cm 
2

2

M
kg.m

l

  

1       

2       

3       

4       

5       

           Mean          ………… 

 Frequency of the tuning fork,        N = 
2

g M

4m l

 
 
 

  =  ………..  =  ……… Hz 

To find frequency-Longitudinal mode 

Trial 

No. 

Mass in the 

scale pan 

x gm 

Total mass 

suspended  

M = (M0+x) gm 

Number of 

loops ‘q’ 

Length of q 

loops in cm 

Length of one 

loop l  in cm 
2

2

M
kg.m

l





 

1       

2       

3       

4       

5       

           Mean          ………… 

 Frequency of the tuning fork,        N = 
2

g M

m l

 
 
 

  =  ………..  =  ……… Hz 

Result 
 Frequency of the tuning fork,        N =  …….. Hz 
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Exp.No.1.9 

Lee’s disc- Thermal conductivity of a bad conductor 

Aim: To determine the thermal conductivity of a bad conductor by Lee’s disc method. 

Apparatus: The Lee’s disc apparatus, bad conductor in the form of disc, two thermometers, 

steam boiler, etc. 

The Lee’s disc apparatus consists of a circular brass disc of about 8 to 12 cm diameter and 

thickness about 1 to 2 cm. It is suspended on a stand as shown in the fig.a. A steam chamber of 

the same diameter is used to heat the disc. The bad conductor whose thermal conductivity is to 

be determined is taken in the form of a disc of the same diameter of the brass disc. It is kept in 

between the brass disc and the steam chamber. There are holes provided on the steam chamber 

and the disc to insert the thermometers.  

Theory: The quantity of heat conducted per second through a conductor is proportional to the 

area through which heat conducts and the temperature gradient. That is,  

 

       Q    1 2θ θ
A

d

 
 
 

 

   =  1 2θ θ
λA

d

 
 
 

       (1) 

where,  is a constant for a particular material. The constant  is called the thermal conductivity 

of the material. 1 and 2 are the temperatures on both sides of the bad conducting disc and ‘d’ is 

its thickness. These temperatures, respectively, are the temperature of the steam chamber and the 

brass disc near the bad conductor.  At the steady state condition, the quantity of heat conducted 

through the experimental disc is completely radiated from the brass disc. 

The quantity of heat radiated by the brass disc is calculated as follows. The brass disc alone 

is heated (after removing the bad conducting disc) to a temperature greater than the steady state 

temperature 2 and is allowed to cool by radiation. Let 

2θ

dθ

dt

 
 
 

 is the rate of cooling of the Lees 

disc at a temperature 2. Then the rate of loss of heat by the brass disc is proportional to the area 

Steam 

Thermometers 

Brass disc Brass disc 

Fig.b Fig.a 

2 

1 2+5 to 

2  5 
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of its exposed region. When the disc is completely exposed for radiation we can write, the rate of 

loss of heat per unit area 

     totalQ

Total area of the Lee's disc
 =  2

2

θ

dθ
Mc

dt

2πr 2πrh

 
 
 


  

where, M is the mass, c is the specific heat capacity, r is the radius and h is the height of the 

brass disc. At the steady state condition during the experiment, the exposed area of the brass disc 

does not contain the upper face. Therefore, the rate of loss of heat from the disc during the  

experiment is given by, 

         Q =  Rate of loss of heat through unit areaexposed area of the disc 

   =   2 2

2

θ

dθ
Mc

dt
πr 2πrh

2πr 2πrh

 
 
 

 


 =  

2θ

dθ r 2h
Mc

dt 2r 2h

   
   

   
  (2) 

At the steady state condition, since the quantity of heat conducted through the experimental disc 

is completely radiated from the brass disc, Q = Q. Thus from eqns.1 and 2, 
 

  1 2θ θ
λA

d

 
 
 

 =  

2θ

dθ r 2h
Mc

dt 2r 2h

   
   

   
 

           =  

21 2 θ

Mc d dθ r 2h

A θ θ dt 2r 2h

     
    

     
 

   =  

2

2

1 2 θ

Mc d dθ r 2h

πr θ θ dt 2r 2h

     
    

     
     (3) 

2θ

dθ

dt

 
 
 

 is the rate of cooling of the brass disc 

at the temperature 2. This can be determined 

by finding the slope of the time-temperature 

graph at the temperature 2.   

Procedure: The diameter and the thickness 

of the brass disc are measured by a vernier 

calipers. Its mass M is measured by a balance. 

The thickness ‘d’ of the experimental disc is 

determined by a screw gauge. 

The experimental arrangements are set 

up as shown in the fig.a. The brass disc is 

suspended by a heavy retort stand. The 

experimental disc and the steam chamber are placed on it. Thermometers are inserted in the holes 

provided for that. Steam from a boiler is allowed to pass through the steam chamber till the two 

thermometers show steady temperatures. Note the steady temperatures 1 of the steam chamber 

and 2 of the brass disc. Then the experimental disc is removed and the steam chamber is kept in 

contact with the brass disc. When the temperature of the brass disc is raised by about 8 or 10 

degree, the steam chamber is removed and the brass disc is allowed to cool (as shown in fig.b). 

Time t in seconds 

T
em

p
er

at
u
re

 
 

2 
d 

dt 

Fig.c 
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When the temperature of the brass disc reaches 2+5, a stop watch is started. The time is noted at 

regular intervals of temperature, say 0.5C (or 0.2C) till the temperature falls to 25. A graph 

is plotted with time along the X axis and the temperature along the Y axis as shown in fig.c. To 

find out 

2θ

dθ

dt

 
 
 

, draw a line parallel to the X axis at the temperature 2. At the point of 

intersection of this line with the curve, draw the tangent of the curve. Now construct a triangle as 

shown in fig.c and the slope of the curve at 2 is determined.  

 Do not stop the stop watch while taking the temperature-time observation. Count the time 

in minutes and seconds. 

 It should be remembered that the slope of the curve is determined at the steady state 

temperature 2 of the brass disc. 

Observation and tabulation 
To find the thickness ‘d’ of the experimental disc using screw gauge 

 Distance moved by the screw tip for 5 rotations of the head =  ……… mm 

 Pitch of the screw, P =  
Distance moved by the screw tip

Number of rotations of the head
 =  ……… mm 

 Number of divisions on the head scale =  ……… 

 Least count (L C) =  
Pitch

Number of divisions on the head scale
 =  ……. mm 

 Zero coincidence =  ……..  ;   Zero error   =  …….   ; Zero correction  =  …….. 

Trial No. P S R 

‘x’ mm 

Observed 

H S R 

Corrected 

H S R ‘y’ 

Thickness 

d x y LC    mm 

Mean d 

mm 

1      

2     

3     

4     

5     
 
To find the radius ‘r’ and thickness ‘h’ of the brass disc using vernier calipers 

 Value of one main scale reading of the vernier calipers (1 m s d) =  …….. cm 

 Number of divisions on the vernier scale        n =  …….. 

 Least count (LC) of the vernier calipers =    
1 m s d

n
 =  …… cm 

   Radius ‘r’ 

Trial 

No. 

M S R 

cm 

V S R D = M S R + V S RL C 

cm 

Mean diameter  

‘D’ cm 

Mean radius 

r = D/2 cm 
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   Thickness ‘h’ 

Trial No. M S R 

cm 

V S R h = M S R + V S RL C 

cm 

Mean thickness ‘h’  

cm 

     

    

    

    

    

 

  Mass of the brass disc,     M =  ………. kg 

 Specific heat capacity,      c =  ……….. J/kg.K 

 Steady temperature of the steam chamber, 1 =  ………C 

 Steady temperature of the brass disc,        2 =  ………C 

To find 

2θ

dθ

dt

 
 
 

  

Temperature                     

Time                      

Temperature                     

Time                      

Temperature                     

Time                      

  

Calculation 

 Rate of cooling of brass disc at the temperature 2,  =  

2θ

dθ

dt

 
 
 

  =  ……… K/s 

 Thermal conductivity,         =  

2

2

1 2 θ

Mc d dθ r 2h

πr θ θ dt 2r 2h

     
    

     
  

     =  ………………………………. 

     =  ………. Wm
1

K
1

 

Result 
 Thermal conductivity of the given ………… disc =  ………. Wm

1
K
1

 

   

 

 

Physical constants and data 

 Specific heat capacity of brass =  370 J/(kg.K)   
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Exp.No.1.10 

Newton’s law of cooling- Specific heat of a liquid 

Aim: To determine the specific heat capacity of a liquid by the method using Newton’s law of 

cooling.  

Apparatus: A spherical calorimeter, a thermometer, stop clock, given liquid, water, etc.  

Theory: Newton’s law of cooling states that the rate of cooling of a body is proportional to the 

mean difference of temperature between the body and 

its surroundings. If 1 is the initial temperature of the 

body,  2 is the temperature after a time ‘t’ seconds and 

0 be the temperature of the surroundings we can write, 
 

Rate of cooling,   1 2θ θ

t


    1 2

0

θ θ
θ

2


   (1) 

Since the rate of cooling of the body is proportional to 

its rate of loss of heat, 
 

  
 1 2Mc θ θ

t


 =  1 2

0

θ θ
K θ

2

 
 

 
  (2) 

where, M is the mass of the body, ‘c’ is its specific heat 

capacity and K is a constant.  

Let the calorimeter is first filled with hot water. If 

‘tw’ is the time taken by the calorimeter and water to 

cool from 1 to 2, 
 

   c c 1 2 w w 1 2

w

m c θ θ m c θ θ

t

  
 =  1 2

0

θ θ
K θ

2

 
 

 
       (3) 

where, mc is the mass of calorimeter, cc is the specific heat capacity of the calorimeter, mw mass 

of water and cw is specific heat capacity of water. 

If the calorimeter is filled with the given hot liquid and is allowed to cool from the same 

range of temperature and ‘tl’ be the corresponding time taken, we can write, 
 

        
   c c 1 2 1 2m c θ θ m c θ θ

t

l l

l

  
 =  1 2

0

θ θ
K θ

2

 
 

 
       (4) 

where, ml is mass of liquid and cl is its specific heat capacity. From eqns.3 and 4, 

        
   c c 1 2 1 2m c θ θ m c θ θ

t

l l

l

  
 =  

   c c 1 2 w w 1 2

w

m c θ θ m c θ θ

t

  
 

        cl =    

 c c w w c c

w

t
m c m c m c

t

m

l

l

 
  

 
      (5) 

Fig.a 
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Usually 
w

t

t

l  is determined by plotting 

the cooling curves for water filled 

calorimeter and liquid filled calorimeter 

as shown in the fig.b.  
  

Procedure: The mass mc of a clean 

dry spherical calorimeter is determined 

by a common balance. It is then almost 

filled with hot water of temperature 

nearly 90C. It is then suspended in air 

as shown in fig.a. A sensitive 

thermometer is inserted in the 

calorimeter. When the temperature falls 

to 80C, start a stop watch and the time 

temperature observations are made at 

regular intervals of temperature or time. 

(The time may be noted at a regular fall of temperature of 1C till the temperature falls to about 

60C or the temperature may be noted at a regular interval of half a minute till the temperature 

falls to 60C. The first method is advised since the time measurement is more sensitive than the 

temperature measurement). Let the calorimeter is cooled to room temperature. Then the mass of 

the calorimeter and water is determined. Let it be m2.  

The water is poured out and the calorimeter is dried. It is then filled with the hot liquid and 

the time-temperature observations are made for the same temperature range (80C to 60C) as in 

the case of water. The calorimeter is again cooled to room temperature and the mass of 

calorimeter plus liquid, m3, is determined. 

The time-temperature observations are plotted on the same graph paper as shown in fig.b. 

Find out 
w

t

t

l  for different temperature ranges and its average is calculated. Finally, the specific 

heat capacity of the given liquid is calculated using eqn.5. 
 

Observation and tabulation 

Temperature  80 79 78 77 76 75 74 73 72 71 70 

Time in minutes 

and seconds 

water            

Liquid            

Temperature  69 68 67 66 65 64 63 62 61 60  

Time in minutes 

and seconds 

water            

Liquid            

 

Temperature  80 79 78 77 76 75 74 73 72 71 70 

Time in seconds water            

Liquid            

Temperature  69 68 67 66 65 64 63 62 61 60  

Time in seconds water            

Liquid            

tl 
tw 

Time 
T

em
p
er

at
u
re

 

Water 

Liquid 

Fig.b 
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To find 
w

t

t

l  

Sl.No Range of temperature Time of cooling in seconds 

w

t

t

l  
Water Liquid 

     

     

     

     

     

         Mean  ……… 

 

To find masses of calorimeter, water and liquid 

Load in the pans of the balance Turning points Resting 

point 

Sensibility 

0 1

0.01
S

R R



 

Correct weight 

m = W+S(RR0) 

gm 

left Right  

W (gm) 

Left (3) Right (2) 

Nil Nil   R0 = …   

Nil 0.01   R1 = … 

Empty calorimeter    R = … m1 = ……. 

Calorimeter + water     R = … m2 = ……. 

Calorimeter + liquid    R = … m3 = ……. 

 

 Mass of calorimeter,         mc =  m1 =  …….. gm =  ………. kg. 

 Mass of water,     mw =     m2m1 =  …….. gm =  ………. kg. 

 Mass of liquid,     ml =     m3m1 =  …….. gm =  ………. kg. 

 Specific heat capacity of (copper) calorimeter,    cc =  ………. Jkg
1

K
1

 

 Specific heat capacity of water,                            cw =  ………. Jkg
1

K
1

   

 Specific heat capacity of liquid,    cl =    

 c c w w c c

w

t
m c m c m c

t

m

l

l

 
  

 
   

      =  ……………………….. 

      =   ……… Jkg
1

K
1

   

Result 
 Specific heat capacity of liquid,    cl =   …….. Jkg

1
K
1

   

*Standard data 

 Specific heat capacity of water =  4190 Jkg
1

K
1

 

 Specific heat capacity of copper =  385 Jkg
1

K
1
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Exp.No.1.11 

Spectrometer - Refractive index of the material of a prism 

Aim: To determine the refractive index of the material of the prism by finding out the angle of 

minimum deviation. 

Apparatus: Spectrometer, sodium vapor lamp, prism, reading lens etc. 

Theory: For a given prism, corresponding to a 

given angle of deviation there are two possible 

angles of incidence i1 and i2. These two angles 

are such that if one of the angles is the angle of 

incidence, the other angle will be the angle of 

emergence.  

Let i1 and i2 be the two angles of incidence 

and r1 and r2 be the corresponding angles of 

refraction for the given angle of deviation d. 

Then, 

   1 2i i  =  A + d (1) 

   1 2r r  =  A  (2) 

Fig.b gives the variation of angle 

of deviation d with angle of 

incidence i. When the angle of 

deviation is minimum, i1 = i2 = i,  

r1 = r2 = r and d = D. Then, from 

eqn.1 we get, 
 
       2i =  A + D  (3) 

         i =  
A D

2


  (4) 

From eqn.2, 

        r =  
A

2
   (5) 

 Refractive index of the material of the prism,        =  
sin i

sin r
  =  

A D
sin

2

A
sin

2

 
 
 

 
 
 

  (6) 

Procedure: The following preliminary adjustments of the spectrometer are to be made.  

1. Turn the telescope to the white wall. Hold the telescope with left hand firmly. By looking 

through the eye piece, it alone is pushed in or pulled out with right hand till the cross wire 

is seen clearly. 

2. The telescope is then turned towards the distant object and the rack and pinion 

arrangement is adjusted till the image of the distant object is formed clearly on the cross 

wire.  

: i-d curve for an equilateral prism of  = 1.62 Fig.b 

i 

d 

D 

i1 i2 i1=i2 

i1 i2 r1 r2 

A 

d 

Fig:a 



42                                            M C T  Practical I 

3. The telescope is brought in a line with the collimator and sees the image of the slit. If 

there is no image, check whether the slit is opened.  

4. Looking through the telescope, the rack and pinion arrangement of the collimator is 

adjusted till the image of the slit is seen clearly on the cross wire. (Usually the image is 

blurred and spread. Focus the collimator till the image is not blurred and its width is 

minimum). 

5. Now adjust the width of the slit, if needed, to a minimum by rotating the slit width 

adjusting screw. 

6. The prism table is leveled either by observing the reflected images from both the sides of 

the prism or by using a spirit level. In the former method, the prism is mounted on the 

prism table with its base is parallel and 

close to the clamp. The prism table (or 

vernier table) is rotated till the refracting 

edge of the prism is towards the 

collimator. Turn the telescope and the 

reflected image from one of the faces of 

the prism is observed. The two leveling 

screws on that side of the prism table are 

adjusted so that the image is bisected by 

the horizontal cross-wire. Now the 

telescope is turned to the other side of the 

prism and the reflected image from the 

other face is viewed through the 

telescope. Then the leveling screw on that 

side of the prism table is adjusted till the 

image is bisected by the horizontal wire. 

This process may be repeated once again.  

Collimator 

Telescope 

Prism table 

Vernier table 
Eye piece 

Ver I 

Ver II 

Slit 

Slit width adjusting screw 

Rack and pinion of collimator 

Rack and pinion of telescope 

Main screw of telescope 

Main screw of vernier table 

Leveling screw of prism table 

Tangential screw of telescope 
Tangential screw of vernier table 

Leveling screw  

Leveling screw  

Fig:c 

Reflected ray 

C
o
ll

im
at

o
r  

Fig:d 

2A Reflected ray 

A 

C B 
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To determine the angle of the prism A: After doing the preliminary adjustments, the telescope 

is turned towards one side of the prism and the reflected image from that face is viewed through 

the telescope (refer fig.d). The vernier table and the telescope are clamped by tightening their 

main screws. The tangential screw of the telescope is adjusted till the reflected ray coincides with 

the vertical cross-wire. The readings on both the verniers are noted. Now release the telescope 

and is turned to the other side of the prism till the reflected image from that face is obtained in 

the telescope. Clamp the telescope there. By adjusting its tangential screw, the reflected image is 

made to coincide with the vertical cross-wire. The readings on both the verniers are again noted. 

The difference between the corresponding vernier readings gives the angle of the prism. 

To determine the angle of minimum deviation: The vernier table is released and is rotated 

such that one of the refracting faces is towards the 

collimator (See fig.e and also fig.c in the next 

experiment). Looking through the other face with one 

eye (other eye closed) the vernier table is rotated till the 

refracted image is seen. Find approximately the position 

at which the image turns back. Now bring the telescope 

in the line of the refracted ray and view the refracted 

image. Looking through the telescope the vernier table is 

slightly turned to and fro and finds the exact position at 

which the refracted image just turns back. Now the 

prism is set for its minimum deviation position. The 

vernier table and the telescope are clamped at this 

position by tightening their main screws. Now adjust the 

tangential screw of the telescope so that the refracted 

image coincides with the vertical cross wire. The 

readings on both the verniers corresponding to this 

position are taken. The prism is now removed and the 

telescope is brought in the line of the direct ray. After 

clamping the telescope, its tangential screw is adjusted 

such that the direct image coincides with the vertical 

wire. The readings on both the verniers are again taken. 

The difference between the minimum deviation position 

reading and the direct reading gives the angle of minimum deviation.  
 

 If the prism table is not properly leveled one may not get the image in the field of view of 

the telescope. In such a case the reflected images are seen directly with naked eye without 

using telescope and the approximate leveling is to be done.  

 The vernier table and the prism table are initially adjusted at the proper positions (both 

the verniers are in a line perpendicular to collimator) so that the readings on both the 

verniers are conveniently taken. 

 Reading lens must be used to observe the vernier readings. 

 Don’t forget to clamp the vernier table and the telescope after each adjustment. For 

taking the direct reading, the prism must be removed carefully without any change in the 

vernier table.  

 The removal of the prism to take the direct reading can be avoided if initially the prism 

table is adjusted to a height such that upper half the light from the slit passes above the 

D Refracted ray 
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prism and the lower half of light passes through the prism so that we can simultaneously 

see the direct image and the image formed by the prism.   
 

Observation and Tabulation of data: 

 Value of one main scale division (1 m s d) =  …………… 

 Number of divisions on the vernier      n =  …………… 

 Least count    (L C) =  
Value of 1 m s d

n
 =  …………… 

[One degree =  60 minute,  (1 = 60 )] 

To determine the angle of the prism A 

Reading of the Ver I Ver II Mean 

2A 

 

A M S R V S R Total M S R V S R Total 

Reflected image from first face 

                        ‘a’ 

       

 

 

Reflected image from second 

face                 ‘b’ 

      

Difference between the above readings   2A = ab       2A = ab  
 
To determine the angle of minimum deviation D 

Reading of the Ver I Ver II Mean 

D M S R V S R Total M S R V S R Total 

Refracted image corresponding 

to minimum deviation ‘x’ 

       

 

Direct image ‘y’       

Difference between the above readings   D = xy       D = xy  
 
Calculation 

 Refractive index of the material of the prism,        =    

A D
sin

2

A
sin

2

 
 
 

 
 
 

   =  ………. 

        =  ………. 

Result 

 Angle of the prism                  A =   …………. 

 Refractive index of the material of the prism,       =   ………….   

Standard data* 

Refractive index against air for mean sodium line (589.3 nm) 

    Crown glass 1.48  1.61 

   Flint glass 1.53  1.96 
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Exp.No.1.12 

Spectrometer-Dispersive power of a prism 

Aim: To determine the dispersive power of the material of the prism for different pairs of 

spectral lines.  

Apparatus: Spectrometer, mercury vapor lamp, prism, reading lens etc. 

Theory: For a given prism, corresponding to a 

given angle of deviation there are two possible 

angles of incidence i1 and i2. These two angles 

are such that if one of the angles is the angle of 

incidence, the other angle will be the angle of 

emergence.  

Let i1 and i2 be the two angles of incidence 

and r1 and r2 be the corresponding angles of 

refraction for the given angle of deviation d. 

Then, 

   1 2i i  =  A + d (1) 

   1 2r r  =  A  (2) 

Fig.b gives the variation of angle of 

deviation d with angle of incidence 

i. When the angle of deviation is 

minimum, i1 = i2 = i,  r1 = r2 = r and 

d = D. Then, from eqn.1 we get, 
 
       2i =  A + D  (3) 

         i =  
A D

2

 
  (4) 

From eqn.2, 

        r =  
A

2


   (5) 

Refractive index of the material of the prism,        

          = 
sin i

sin r
 =  

A D
sin

2

A
sin

2

  
 
 

 
 
 

         (6) 

The refractive index  of a material depends on the wavelength of the light. Hence it is a 

function of wavelength . The dispersive power of the material is defined as 
dμ

dλ
. By Cauchy’s 

relation,  

 Refractive index,    =   
2

B
A

λ
        (7) 

where, A and B are constants. 

: i-d curve for an equilateral prism of  = 1.62 Fig.b 

i 

d 

D 

i1 i2 i1=i2 

i1 i2 r1 r2 

A 

d 

Fig.a 
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Dispersive power,  =  
dμ

dλ
 = 

3

2B

λ
       (8) 

Since the dispersive power varies inversely with cube of the wavelength, it is different at 

different wavelength region. If 1 and 2 are the refractive indices for the wavelengths 1 and 2, 

it can be shown that the dispersive power of the material in that wavelength range as, 
 

        12 =  2 1μ μ

μ 1




, where,  2 1μ μ

μ
2


       (9) 

Procedure: All the procedures are same as that for the previous experiment. Instead of a 

sodium lamp we use a mercury lamp in this case. The refracted spectrum consists of a number of 

spectral lines of different colours (wavelengths). The prism is adjusted to be in the minimum 

deviation position for each line and the corresponding angle of minimum deviation is determined 

as described in the previous experiment. Using eqn.9 the dispersive powers for different pairs of 

wavelengths (refractive indices) are calculated.   

 

Observation and tabulation 
Value of one main scale division (1 m s d) =  …………… 

 Number of divisions on the vernier      n =  …………… 

 Least count    (L C) =  
Value of 1 m s d

n
 =  …………… 

[One degree =  60 minute,  (1 = 60 )] 

Angle of the prism A  

Readings of the Ver I Ver II Mean 

2 A  
 

A  M S R V S R Total M S R V S R Total 

Reflected image from first face 

                        ‘a’ 

       

 

 

Reflected image from second 

face                 ‘b’ 

      

Difference between the above readings 2 A  = ab       2 A  = ab  

 

 

Fig.c 
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Determination of refractive indices for various colours 

 

 

 

Colours 

of 

spectral 

lines 

 

Reading corresponding to  the 

minimum deviation position 

of the refracted rays  

‘x’ 

Reading corresponding to the 

direct ray  

‘y’ 

 

Angle of 

minimum 

deviation 

D = xy  

 

 

 

 

 

 
 

Ver 1 Ver II Ver 1 Ver II 
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Calculation 

(1) Dispersive power of ………… and ……….. colours. 

Refractive index of ………… colour, 1 =  ……… 

Refractive index of ………… colour, 2 =  ……… 

Dispersive power, …  … =  ………. =  ……… 

(2) Dispersive power of ………… and ……….. colours. 

Refractive index of ………… colour, 1 =  ……… 

Refractive index of ………… colour, 2 =  ……… 

Dispersive power, …  … =  ………. =  ……… 

(3) Dispersive power of ………… and ……….. colours. 

Refractive index of ………… colour, 1 =  ……… 

Refractive index of ………… colour, 2 =  ……… 

Dispersive power, …  … =  ………. =  ……… 

Result 
 Dispersive power of ………… and ……….. colours =  ……. 

 Dispersive power of ………… and ……….. colours =  ……. 

 Dispersive power of ………… and ……….. colours =  ……. 


