Reg. No.: \qquad
Name : \qquad
Third Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, November 2022

3C03PHY: Optics and Photonics

Max. Marks : 32
Time : 3 Hours
PART - A

Short answer questions. Answer all questions. Each carries one mark.

1. State the superposition principle.
2. What is meant by population inversion ?
3. State Brewster's law.
4. What is the principle of optical fibre?
5. What do you mean by holography?

PART - B

Short essay questions. Answer any 4 questions. Each carries two marks.
6. What are the conditions of obtaining constructive and destructive interference ?
7. Distinguish between e-rays and o-rays.
8. Compare a zone plate and a convex lens.
9. Explain how circularly polarised light can be produced.
10. Discuss the advantages of fibre optic communication system.
11. What is the difference between a step index fibre and graded index fibre?

PART - C

Problems. Answer any three questions. Each carries three marks.
12. A soap film $5 \times 10^{-5} \mathrm{~cm}$ thick is viewed at an angle of 35° to the normal. Find the wavelength of light in the visible spectrum, which will be absent from the reflected light, $\mu=1.33$.
13. If the grating element is $2 \times 10^{-6} \mathrm{~m}$. How many order of spectrum are possible for a light of wavelength 650 nm ?
14. Calculate the thickness of ice capable of inverting a circularly polarised light. $n_{0}=1.309, n_{c}=1.313$, wavelength of light $=590 \mathrm{~nm}$.
15. When sunlight is incident on water surface at a glancing angle of 37°, the reflected light is found to be completely plane polarised. Determine the refractive index of water and angle of refraction.
16. Calculate the numerical aperture and acceptance angle of a fibre having core refractive index $=1.55$ and cladding refractive index $=1.50$.

PART - D
Long essay. Answer any two questions. Each carries five marks.
17. Explain the formation of Newton's rings. How can these be used to determine the wavelength of monochromatic light?
18. Explain double refraction. Explain the working of Nicol prism. Give Huygen's theory of double refraction.
19. Discuss the phenomenon of Fraunhoffer diffraction at a single slit.
20. Explain the principle, construction and working of a $\mathrm{He}-\mathrm{Ne}$ laser.

