Reg. No. : \qquad
Name :
Third Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, November 2022
(2019 Admission Onwards) CORE COURSE IN PHYSICS
3B03PHY : Mechanics - II
Max. Marks: 40
Time : 3 Hours
PART - A

Short answer questions, answer all questions, each question carries 1 mark. ($6 \times 1=6$)

1. State the principle of equivalence.
2. State law of equal areas.
3. Write down the equation of a forced damped harmonic oscillator and describe the terms involved.
4. Write down general expression for a plane progressive wave traveling in positive x direction and negative x direction.
5. Explain length contraction.
6. Describe the relativistic Doppler Effect.
PART - B

Short essay questions, answer any 6 questions, each question carries 2 marks.
7. Show that any coordinate system moving uniformly with respect to an inertial system is also inertial.
8. What is a central force ? Show that the motion of particle under central force is always confined to a single plane.
9. What are stationary satellites? Calculate the height at which such a satellite must revolve in its orbit around the earth.
p.t.o.
10. Show that Energy Dissipation in the Damped Oscillator is exponentially in time.
11. State Fourier theorem. What are the conditions to apply Fourier theorem?
12. Write down Lorentz coordinate transformation equation. Show that Lorentz coordinate transformation reduce to Galilean transformation when $u \ll c$.
13. Show that two events that are simultaneous in one reference frame are not simultaneous in another reference frame moving with first.
14. Explain the twin paradox.
PART - C

Problems, answer any 4 questions, each question carries 3 marks.
15. A small weight of mass m hangs from a string in a car which accelerates at a rate A. What is the static angle of the string from the vertical and what is its tension? Analyze the problem both in an inertial frame and in a frame accelerating with car.
16. A particle is in a circular orbit under the action of an attractive central force given by $f(r)=k / r^{3}$, where k is constant. Obtain an expression for the angular momentum and show that it is constant.
17. If the quality factor Q in a damped harmonic oscillator is defined as $Q=(2 \pi \times$ average energy stored per cycle)/ (Average energy dissipated per cycle). Then show that $Q=\omega / 2 b$.
18. If the velocity of sound in hydrogen at a certain temperature is $1300 \mathrm{~m} / \mathrm{s}$. Calculate velocity at the same temperature in a diatomic gas of molecular weight 32.
19. In the laboratory one particle A moves with velocity $v_{x}=+2 \times 10^{8} \mathrm{~m} / \mathrm{sec}$ and another particle B moves with velocity $v_{x}=-2 \times 10^{8} \mathrm{~m} / \mathrm{sec}$. Calculate the velocity of A relative to B.
20. Find the velocity and momentum of electron ($\mathrm{E}_{0}=.511 \mathrm{MeV}$) with kinetic energy of 10 MeV .
PART - D

Long essay questions, answor any 2 questions, each question carries 5 marks. ($2 \times 5=10$)
21. State and explain Kepler's laws of planetary motion. Prove second and third law.
22. Establish differential equation of motion for a damped harmonic oscillator and write down the general solution for displacement for oscillatory motion and sketch it. Show that Energy falls exponentially with time.
23. Describe the Michelson-Morley experiment. How does it invalidate the concept of ether?
24. Obtain the Lorentz transformation equations.

