K21U 6709

Reg. No. :

Name :

I Semester B.A. Degree (CBCSS-OBE – Regular/Supplementary/ Improvement) Examination, November 2021 (2019 Admission Onwards) COMPLEMENTARY ELECTIVE COURSE IN ECONOMICS/DEVELOPMENT ECONOMICS 1C01ECO/DEVECO : Mathematics for Economic Analysis – I

Time : 3 Hours

Max. Marks: 40

PART – A

Answer all questions. Each carries one mark.

- 1. Define the following : Convex and Concave function.
- 2. Derive the slope of the function 8y 2x + 16 = 0.
- 3. Find the shape of the graph of the equation x = 4.
- 4. What is an increasing function ?
- 5. What is an inflection point ?
- 6. Find the Marginal Revenue and Average Revenue from Total Revenue function $TR = 12Q - Q^2$. (1×6=6)

PART – B

Answer any six questions. Each carries two marks.

- 7. Find the marginal productivity of different inputs of the following function $Q = 6x^2 + 3xy + 2y^2$.
- 8. Is the following equation a function or not. Why $2^{2} = x$
- 9. Find the limits for the following function $\lim_{n\to 4} [3x^3 + 7x 12]$.

10. State continuity.

11. Differentiate $f(x) = 18\sqrt{x}$.

P.T.O.

K21U 6709

- 12. What is Logarithmic function ?
- 13. State the applications of constraint optimisation in economics.
- 14. What is meant by Homogenous production ?

PART – C

Answer any four questions. Each carries three marks.

- 15. Discuss the application of derivatives in economics.
- 16. Briefly explain different types of functions in economics.
- 17. What is a linear function ? Draw the graph of $y = -\frac{1}{4}x + 3$.
- 18. What is higher order derivative ? Find the second order derivative of the function $y = 7x^3 + 5x^2 + 12$. Evaluate it at x = 2.
- 19. Find the second order direct partial derivatives Z_{xx} and Z_{yy} of the following function $Z = (x^2 + 2y)^4$.
- 20. Use Lagrange multiplier to optimise the following functions subject to the given constraint $f(x, y) = 26x 3x^2 + 5xy 6y^2 + 12y$ subject to the constraint 3x + y = 170. (4×3=12)

Answer any two questions. Each carries five marks.

- 21. A firm producing two goods x and y has the profit function $\pi = 64x 2x^2 + 4xy 4y^2 + 32y 14$. Find out the profit maximising level of output for each two goods. Conduct the test to ensure that the profit is at maximum.
- 22. Briefly explain different types of functions.
- 23. Define Lagrange multiplier. Optimize the following Cobb-Douglas production functions subject to the given constraint by (1) Forming the Lagrange function (2) finding the critical values q = K^{0.3} K^{0.5} subject to 6k + 2L = 384.
- 24. Given the demand for beef $Q_b = 4850 5P_b + 1.5P_P + 0.1Y$ with Y = 10000, $P_b = 200$ and the price of $P_p = 100$. Find (1) Income elasticity and (2) the cross price elasticity of demand for beef. (2×5=10)

(6×2=12)