Reg. No. : \qquad
Name : \qquad

I Semester B.Sc. Degree (CBCSS - Supplementary) Examination, November 2021 (2015-2018 Admissions) COMPLEMENTARY COURSE IN PHYSICS 1C01PHY : Mechanics

Time: 3 Hours
Max. Marks : 32
Instruction : Write answers in English only.
SECTION-A
Very short answer type. Each carries 1 mark. Answer all 5 questions.

1. Dimensional formula of stress is \qquad .
2. In order to reduce the depression generated in a beam when loaded at one end, the Young's modulus of the material must be \qquad …
3. In CGS system, the unit of moment of inertia is \qquad .
4. Is the time period of a compound pendulum depended on its mass \qquad
5. The amplitude of damped simple harmonic oscillator \qquad .

SECTION - B

Short answer type. Each carries 2 marks. Answer 4 questions out of 6 .
6. What are the properties of a well behaved wave function?
7. State theorems of parallel and perpendicular axes.
8. What is angle of twist and angle of shear ?
9. Draw the energy graph showing the potential energy, kinetic energy and total energy of a particle executing harmonic oscillatory motion.
10. What is a quality factor? What are its unit?
11. What do you understand by longitudinal wave? Give an example.

SECTION - C

Short essay/problem type. Each carries $\mathbf{3}$ marks. Answer $\mathbf{3}$ questions out of 5 .
12. The uncertainty in the momentum Δp of a ball travelling at $20 \mathrm{~m} / \mathrm{s}$ is $1 \times 10^{-6} \times 10^{-6}$ of its momentum. Calculate uncertainty in position Δx ? Mass of the ball is given as 0.5 kg .
13. Show that a greater couple is required to twist a hollow cylinder as compared to the solid one.
14. What do you mean by modes of vibration? Explain.
15. A 4 kg mass attached to a spring is observed to oscillate with a period of 2 seconds. What is the period of oscillation if a 6 kg mass is attached to the spring ?
16. A thin uniform rod of length 1 m and mass 1 kg is rotating about an axis passing through its centre and perpendicular to its length. Calculate the moment of inertia and radius of gyration of the rod about an axis passing through a point midway between the centre and its edge perpendicular to its length.

SECTION - D
Long essay type. Each carries 5 marks. Answer 2 questions out of 4 .
17. Show that in a linear bounded medium the rate of transference of energy is zero.
18. What is damped harmonic oscillator? Obtain an equation for a damped harmonic motion.
19. Derive Davisson-Germer experiment. Comment on the results.
20. What is moment of inertia? Derive the moment of inertia of a thin uniform rod about an axis passing through its centre of mass and perpendicular to its length and also about an axis passing through one end of the rod.

