Reg. No. :
Name : \qquad

Time: 3 Hours

II Semester B.Sc. Degree (CBCSS - Supple.) Examination, April 2021 (2014-2018 Admission) 2C02 MAT-CS : Mathem COURSE IN MATHEMATICS 02 MAT-CS : Mathematics for Computer Science - II

Max Marks

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

1. Give the reduction formula for $\int \tan ^{n} x d x$.
2. If the two curves $y_{1}=o_{1}(x)$ and $y_{2}=o_{2}(x)$ intersect at (a, c) and (b,d) and lie between these points, then what is the area between these curves?
3. Give an example for a 3×3 upper triangular matrix.
4. If $A=A^{\top}$, then it is said to be a \qquad matrix.
SECTION - B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each
5. Evaluate $\int \operatorname{cosec}^{5} d x$.
6. Find the whole area included between the curve $x^{2} y^{2}=a^{2}\left(y^{2}-x^{3}\right)$ and its asymptotes
its
7. Find the perimeter of the cardioid $r=a(1-\cos \theta)$.
8. Find the volume of the solid generated by the revolution of the tractrix $x=a \cos$ $t+\frac{1}{2} \log \tan ^{2} \frac{t}{2}, y=a \sin t$ about its asymptotes.
9. Evaluate $\int_{0}^{\pi} \int_{0}^{x} \sin y d y d x$.
10. Find the volume of the solid whose base is in the $x y$-plane and is the triangle bounded by the x-axis, the line $y=x$ and the line $x=1$ while the top of the solid is in the plane $z=x+y+1$.
11. Let A be a 2×2 matrix. If it is symmetric as well as skew symmetric, then what is A and why ?
12. Are the vectors $(1,2),(3,4)$ linearly independent? Why ?
13. If A, B are both orthogonal, then what we can say about $A B$? Why ?

SECTION-C

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.
14. If $I_{n}=\int_{0}^{a}\left(a^{2}-x^{2}\right) d x$ and $n \neq 0$ prove that $I_{n}=\frac{2 n a^{2}}{2 n+1} I_{n-1}$.
15. Find the perimeter of the loop of the curve $9 a y^{2}=(x-2 a)(x-5 a)^{2}$.
16. Find the rank of $A=\left(\begin{array}{lll}1 & 3 & 1 \\ 2 & 5 & 3 \\ 3 & 1 & 1\end{array}\right)$ by row reduction.
17. For the orthogonal matrix $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, verify that $A^{-1}=A^{\top}$.
18. Verify the Cayley-Hamilton theorem for $A=\left(\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right)$.
19. Consider the systems of linear equations:

$$
\begin{aligned}
& x+y=3,4 x+3 y=4 \text { and } \\
& 5 x+4 y=7,9 x+7 y=11 \text {. Are they row equivalent? Why? }
\end{aligned}
$$

SECTION-D

Answer any 2 questions from among the questions 20 to 23 . These questions carry 5 marks each.
20. Find the ratio of the two parts into which the parabola $2 \mathrm{a}=\mathrm{r}(1+\cos \theta)$ divides the area of the cardioid $r=2 a(1+\cos \theta)$.
21. If the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ revolves about the x-axis, show that the volume included between the surface thus generated, the cone generated by the asympiote and two planes perpendicular to the axis of x, at a distance h apart is equal to that of a circular cylinder of height h and radius b.
22. Solve the system of linear equations:

$$
\begin{aligned}
& 2 a+3 b+4 c+5 d=6 \\
& a-b+2 c-4 d=4 \\
& a+c-8 d=5
\end{aligned}
$$

by row reduction. How many solutions the system have? Why?
23. Diagonalize the matrix $A=\left(\begin{array}{cc}-6 & 4 \\ 3 & 5\end{array}\right)$.

