||||||||||||||||||||||||||||||||||||||

Reg. No. : \qquad
Name : \qquad

III Semester B.Sc. Degree (CBCSS - Sup./Imp.) Examination, November 2021
 (2015-18 Admissions)
 CORE COURSE IN PHYSICS
 3B03PHY: Allied Physics

Time: 3 Hours
Max. Marks : 40
Instructions : 1) Section - A : Answer all questions (Very short answer type. Each question carries 1 mark).
2) Section - B:Answer any seven questions (Short answer type. Each question carries 2 marks).
3) Section - C : Answer any four questions (Short essay/problem type. Each question carries 3 marks).
4) Section - D: Answer any two questions (Long essay type. Each question carries 5 marks).
5) Write answers in English only.
SECTION - A

1. Define the term packing fraction.
2. What is meant by Poisson's ratio ?
3. The fundamental building block of a crystal structure is \qquad
4. The expression for capacitive reactance of an ac circuit is \qquad $(4 \times 1=4)$

SECTION - B

5. Obtain Braggs diffraction condition in direct lattice.
6. Define Miller indices. How are they obtained?
7. Show that five-fold symmetry is not possible in a crystal.
8. Sketch (111) plane in a simple cubic unit cell.
9. Distinguish between angle of twist and angle of shear.
10. Define critical velocity of a liquid flow. Obtain an expression for it.
11. Distinguish between a voltage source and current source.
12. What is meant by power factor of an ac circuit?
13. Explain why small drops of mercury are spherical while large drops of mercury are flat.
14. Explain the working of a choke coil.

SECTION - C

15. How many lattice system and types exist in crystals ? Explain.
16. Derive an expression for excess pressure inside a soap bubble.
17. A spherical soap bubble of radius 1 cm is formed inside another of radius 2 cm . Find the radius of a single soap bubble whose internal pressure is the same as that of the smaller bubble.
18. A 400 mH coil of negligible resistance is connected to an AC circuit in which an effective current of 6 mA is flowing. Find out the voltage across the coil if the frequency is 1000 Hz .
19. Derive an expression for the resonant frequency of a series LCR circuit.
20. State and Explain Norton's Theorem.

SECTION - D

21. Derive Poiseuille's formula for the rate of flow of a liquid through a capillary.
22. Explain Laue method of X-Ray diffraction. Obtain Laue equations for X-ray diffraction by crystals.
23. What do you mean by bending moment? Derive an expression for the depression of a uniform beam supported at its ends and loaded in the middle.
24. Explain growth and decay of current in a capacitor. What is meant by time constant?
($2 \times 5=10$)
