|||||||||||||||||||||||||||||

Reg. No. : \qquad
Name: \qquad
IV Semester B.Sc. Degree (CBCSS-Reg./Sup./Imp.) Examination, April 2020 (2014 Admn. Onwards) (2014 Admn. Onwards)
COMPLEMENTARY COURSE IN MATHEMATICS
4C04 MAT-CS : Mathematics For Computer Science - IV

Max. Marks : 40
Time: 3 Hours

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

1. Find the first partial derivatives of $\bar{v}=[\cos x \cosh y,-\sin x \sinh y]$.
2. A line integral is path independent in a domain D if and only if its value around every closed path in D is zero. State True or False.
3. State Stoke's theorem.
4. The percentage error ϵ_{r} is defined by $\epsilon_{r}=\ldots$
SECTION - B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.
5. Find the directional derivative of $f(x, y, z)=2 x^{2}+3 y^{2}+z^{2}$ at the point $(2,1,3)$ in the direction of $\bar{i}-2 \bar{k}$.
6. If $\bar{v}=y z \bar{i}+3 z x \bar{j}+z \bar{k}$, then directly compute $\operatorname{div}(c u r l \bar{v})$.
7. If $f(x, y, z)$ is a twice continuously differentiable scalar function, then show that curl $(\operatorname{grad} f)=0$.
8. Use Green's theorem to evaluate $\int_{C} \bar{F} . d r$ counterclockwise around the square C whose vertices are $(0,0),(\pi / 2,0),(\pi / 2, \pi / 2)$ and $(0, \pi / 2)$ when \bar{F} is the vector [$y \sin x, 2 x \cos y$].
9. Using the method of false position find an approximate numerical solution of $x^{2.2}=69$ lying between 5 and 8.
10. Find the missing term in the following table using the forward difference operator.

\mathbf{x}	0	1	2	3	4
\mathbf{y}	1	3	9	-	81

11. Evaluate $\int_{0}^{\pi} t \sin t d t u s i n g$ trapezoidal rule with $h=\pi / 6$.
12. Given that $\frac{d y}{d x}-1=x y$ and $y(0)=1$. Obtain the Taylor series for $y(x)$ and compute $y(0.1)$ correct to four decimal places.
13. From the differeritial equation $y^{\prime}=-y$, estimate the value of $y(0.04)$ by Euler's method with a step size of $h=0.01$, given that $y(0)=1$.
SECTION - C

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.
14. Determine a and b so that $\bar{v}=\left[2 x y+3 y z, x^{2}+a x z-4 z^{2}, 3 x y+2 b y z\right]$ is irrotational.
15. Show that the differential form under the integral sign is exact and evaluate $\int_{(0,-2,2)}^{(10, y)}-z \sin (x z) d x+\cos (y) d y-x \sin (x z) d z$.
16. Compute the flux of water through the parabolic cylinder S : $y=x^{2}, 0 \leq x \leq 2$, $0 \leq z \leq 3$, if the velocity vector is $\bar{v}=\bar{F}=\left[3 z^{2}, 6,6 x z\right]$.
17. Find the Lagrange interpolating polynomial of degree two approximating the function $y=\ln (x)$ defined by the following table. Hence determine $\ln (2.7)$.

\mathbf{x}	2.0	2.5	3
$\mathbf{y}=\ln (\mathbf{x})$	0.69315	0.91629	1.09861

18. Evaluate $\int_{0}^{1} \frac{1}{1+x} \mathrm{dx}$ correct to three decimal places by Simpson's rule with $h=0.5,0.25$ and 0.125 respectively.
19. Using Picard's method solve the differential equation $\frac{d y}{d x}=\frac{x^{2}}{y^{2}+1}, y(0)=0$ to find the values of y corresponding to $x=0.25,0.5$ and 1.0 correct to three decimal places.

SECTION - D

Answer any 2 questions from among the questions 20 to 23 . These questions carry 5 marks each
20. a) Express the helix $\bar{r}(t)=[a \operatorname{cost}$, asint, $c t](c \neq 0)$ with arc length s as the parameter.
b) Find the curvature and torsion of the helix in part (a).
21. Verify divergence theorem for the function $\bar{F}(x, y, z)=7 x \bar{i}-z \bar{k}$ over the sphere $x^{2}+y^{2}+z^{2}=4$.
22. Compute $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=1.05$ from the following data.

\mathbf{x}	1.00	1.05	1.10	1.15	1.20	1.25	1.30
\mathbf{y}	1.000	1.025	1.049	1.072	1.095	1.118	1.140

23. Use the Runge-Kutta method to solve $10 \frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$ for the interval
