Reg. No. : \qquad
Name : \qquad

IV Semester B.Sc. Degree (CCSS-Reg/Supple./Imp.) Examination, May 2015 GENERAL COURSE IN COMPUTER SCIENCE
 4A12CSC : Numerical Skills

Time : 3 Hours
Max. Weightage: 21

SECTION-A

Answer all questions. Weightage for a bunch of 4 questions is 1.

1. The number 61.38 is accurate to \qquad significant digits.
2. The octal representation of the binary number 111010.101 is \qquad
3. A numerical method is said to be \qquad if it produces an exact solution withing the given limits.
4. $0.324 \mathrm{E} 4+0.561 \mathrm{E} 5=$ \qquad
5. Statements which do not contain any connectives is called as \qquad statements.
6. The disjunction of 2 statements P and Q is False if \qquad
7. A path in a digraph in which all the nodes through which it traverses are distinct is called an \qquad path.
8. A graph which contains some parallel edges is called a \qquad
($2 \times 1=2$ Weightage)

SECTION - B

Answer any 5 questions. Each carries weightage 1.
9. Find an approximate root of $\mathrm{x}^{3}-4 \mathrm{x}+1=0$ by Bisection method. Do 3 iterations.
10. Solve $2 x+y=1$ by Gauss Jordan method.

$$
x-5 y=-5
$$

11. What is meant by numerical differentiation?
12. Evaluate $\int_{-1}^{1} x^{4} d x$ by Gauss-Legendre 2 point quadrature formula.
13. Construct the truth table for the statement $\neg \mathrm{P} \vee \mathrm{Q}$.
14. Obtain the disjunctive normal form of $P \wedge(P \rightarrow Q)$.
15. Define the concept of isomorphism in graphs. Give examples of 2 isomorphic graphs.
16. Define a simple graph. Give an example.

SECTION-C

Answer any 5 questions, each carries weightage 2.
17. Explain Newton-Raphson method.
18. Solve by Gauss-Seidal iteration method
$2 x+y+z=5$
$3 x+5 y+2 z=15$
$2 x+y+4 z=8$
19. Find $\frac{d y}{d x}$ at $x=0.96$ and at $x=1.04$ for the function $y=f(x)$ given in the following table.

x	0.96	0.98	1	1.02	1.04
y	0.7825	0.7739	0.7651	0.7563	0.7473

20. Evaluate $\int_{1}^{3} \frac{d x}{2 x-1}$ by Simpson's $\frac{1}{3}^{\text {rd }}$ rule taking 8 subintervals.
21. Úse Euler's method to find $y(0.1)$ correct to 4 decimal places taking $h=0.02$ given $\mathrm{y}^{\prime}=\frac{\mathrm{y}-\mathrm{x}}{\mathrm{y}+\mathrm{x}}, \mathrm{y}(0)=1$
22. Show that for any 2 statements P and $Q \neg(P \wedge Q)$ follows from $\neg P \wedge \neg Q$.
23. Show that $\neg(P \underset{\leftarrow}{\rightleftarrows}) \Leftrightarrow(P \wedge \neg Q) \vee(\neg P \wedge Q)$.
24. Obtain the adjacency matrix and path matrix of the following digraph.

($5 \times 2=10$ Weightage)

SECTION -D

Answer any 1 question. Weightage 4.
25. a) Evaluate $\sqrt[7]{125}$ correct to 3 decimal places by Regula-Falsi method.
b) Use fourth order Runge-Kutta method to find $y(0.1)$ given $y^{\prime}=x+y, y(0)=1$ (Take $h=0.0 .5$).
26. a) Obtain the principal conjunctive normal form of $(\neg P \rightarrow R) \wedge\left(Q_{\rightleftarrows} P\right)$
b) Prove that the statement

$$
\left[(P \rightarrow Q)_{\wedge}(Q \rightarrow R)\right] \rightarrow(P \rightarrow R) \text { is a tautology. }
$$

