Reg. No. : \qquad
Name : \qquad

II Semester B.Sc. Degree (C.B.C.S.S. - Reg./Supple./Improv.) Examination, May 2018 COMPLEMENTARY COURSE IN MATHEMATICS
 2 C02 MAT-CS : Mathematics for Computer Science - II (2014 Admn. Onwards)

Time : 3 Hours
Max. Marks : 40

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

1. Evaluate $\int_{0}^{\pi / 2} \cos ^{9} x d x$.
2. Find the value of $\int_{0}^{\pi / 2} \sin ^{4} x \cos ^{5} x d x$.
3. Give example of a 3×3 lower triangular matrix.
4. When do you say that a square matrix is symmetric ?

SECTION - B
Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each :
5. Find the area of a loop of the curve $r^{2}=a^{2} \cos 2 \theta$.
6. Transform the double integral $\iint x^{m-1} y^{n-1} d x d y$ by the formulae $x+y=u, y=u v$, showing that transformed result is $\iint u^{m+n-1}(1-v)^{m-1} v^{n-1} d u d v$.
7. Find the volume of the solid whose base is in the $x y$ - plane and is the triangle bounded by the x-axis, the line $y=x$ and the line $x=1$ while the top of the solid is in the plane $z=x+y+1$.
8. Prove that $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ is orthogonal.
9. If $a=\left[\begin{array}{l}5 \\ 1 \\ 2\end{array}\right]$ and $b=\left[\begin{array}{lll}3 & 0 & 8\end{array}\right]$, calculate $a b$ and $b a$.
10. Give an example of a vector space and a basis for the same.
11. Find the characteristic polynomial of $A=\left[\begin{array}{rrr}1 & 3 & 5 \\ 0 & 2 & 6 \\ 0 & 0 & -1\end{array}\right]$.
12. Let $A=\left[\begin{array}{rrrr}-5 & 3 & 0 & 0 \\ 0 & 2 & -2 & 6 \\ 1 & 0 & -\frac{1}{2} & 3 \\ \frac{2}{3} & 1 & 3 & -1\end{array}\right]$. Verify that $v=\left[\begin{array}{c}3 \\ 1 \\ 0 \\ -1\end{array}\right]$ is an eigenvector of A and find the eigenvalue corresponding to v .
13. Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]$.

SECTION-C

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each :
14. Find the length of the arc of the equiangular spiral $r=a e^{\theta \cot \alpha}$ between the points for the which the radii vectors are r_{1} and r_{2}.
15. Evaluate $\int \frac{\sin ^{4} x}{\cos ^{2} x} d x$
16. Evaluate the integral $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} \frac{d x d y d z}{(x+y+z+1)^{3}}$.
17. Find the area of the surface generated by revolving about the axis of x, the arc of the parabola $y^{2}=4 a x$ from the origin to the point where $x=a$.
18. Solve by Cramer's rule :
$3 x+3 y+3 z=190$
$x-y=-3$
$4 x-y+z=1$.
19. Diagonalize the following matrix, if possible. $A=\left[\begin{array}{cccc}-2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 24 & -12 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$.

SECTION-D

Answer any 2 questions from among the questions 20 to 23 . These questions carry 5 marks each :
20. Show that the area bounded by the cissoid $x=a \sin ^{2} t, y=a \frac{\sin ^{3} t}{\cos t}$ and its asymptote is $\frac{3 \pi^{2}}{4}$.
21. Find the volume of the solid obtained by revolving the cardioide $\mathrm{r}=\mathrm{a}(1+\cos \theta)$ about the initial line.
22. Find the inverse of the matrix by Gauss-Jordan elimination : $A=\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 2 & 7 & 7\end{array}\right]$.
23. Determine the eigenvalues and eigenvectors of $\left[\begin{array}{ccc}-3 & 1 & -3 \\ 20 & 3 & 10 \\ 2 & -2 & 4\end{array}\right]$.

