

Reg. No	
Name:.	

V Semester B.Sc. Degree (CCSS-Reg./Supple./Imp.) Examination, November 2015 Core Course in Physics 5B06 PHY : ELECTRODYNAMICS - I

Time: 3 Hours

Max. Weightage: 30

SECTION-A

(011	oose the correct answer. Each bunch carri	es a weightage of 1).
1. 1) In the equation $p = \alpha E$, α is	
	a) Dipole moment	b) Polarization
	c) Susceptibility	d) Atomic Polarizability
	Two motol on house of the	d) Atomic Polarizability
"	ratio of charges on the spheres	charged to the same potential. The
	a) $\sqrt{R_1}$: $\sqrt{R_2}$ b) R_1^2 : R_2^2	c) $R_1 : R_2$ d) $R_1^3 : R_2^3$
iii)	Volume current density is	
	a) Current per unit Volume	b) Current per unit Area
	c) Current per unit length	d) Charge per unit length
iv) A soap bubble is negatively charged. Its radius		
a c	a) Decreases	b) Increases
	c) Remains uncharged	d) Cannot be predicted (114 c)
2 1)	A current course is the	(W = 1)
2. 1)	acting on it doesnot depend on	iform magnetic field. The torque
	a) Shape of the loop	b) Area of the loop
	c) Value of current	d) Magnetic field
ii)	Domain formation is the necessary feature	e of
	a) Diamagnetism	b) Paramagnetism

c) Ferromagnetism

- d) All of the above

M 9931

M 9931

iii) The radius of curvature of the path of a charged particle in uniform magnetic field is directly proportional to

-2-

- a) Charge
- c) Energy of the particle

- b) Momentum of the particle
- d) Intensity of the field

b) Reduced by a factor K

- iv) If a medium of dielectric constant K > 1 is introduced in a region, electric field E.
 - a) Increased K times

c) Not affected

d) None of the given

(W = 1)

SECTION-B

(Answer any six questions. Each question carries a weightage of 1).

- 3. What is physical definition of divergence of a vector field?
- 4. What is meant by irrotational field?
- 5. Write down the advantage of potential formulation in electrostatics.
- 6. Write down Poisson's equation.
- 7. Give Clausius-Mossoti formula.
- 8. What is meant by polarization of a dielectric?
- 9. What is Lorentz force?
- 10. State Biot-Savart law in vector form.

SECTION-C

(Answer any nine questions. Each question carries a weightage of 2).

- 11. Show that $(A \times B) \times C$ is not equal to $A \times (B \times C)$.
- 12. Find the area of a parallelogram formed by $A = 2\hat{i} + 3\hat{j}$ and $B = 4\hat{j} 2\hat{k}$.
- 13. Find the potential inside a spherical shell of radius 0.1 m, uniformly charged with 100µC.
- 14. Two charges 4μ C and 5μ C are at the corners of an equilateral triangle of side 30 cm. Find the electric field at the third corner.
- 15. A charge of 10μC is 0.5 m above a large block of a linear dielectric material of susceptibility 6. Find the force on the charge and its direction.

 $(6 \times 1 = 6)$

16. A part of long wire carrying a current of 1A is bent into a semicircle of radius 1 cm. Find the field at the centre of the semicircle.

-3-

- 17. Derive Gauss's law in differential form.
- 18. A sphere of linear dielectric material is placed on an originally uniform electric field E₀. Find the new field inside the sphere, if the dielectric constant is K.
- 19. Calculate the work done by the force $F = 2\hat{i} + 2\hat{j} + 10\hat{k} N$ in moving an object through a displacement of $4\hat{i} + 5\hat{j} \hat{k} m$. Also find the component of the force acting along the direction of displacement.
- 20. Prove that the normal component of electric field is discontinuous at any boundary of a charged surface.
- 21. Two identical drops are charged to the same potential V. Find the new potential if they coalesce into one drop.
- A solenoid of length 20 cm and radius 1 cm and containing 200 turns carries a current of 2A. Calculate the magnetic induction at the center. Also calculate the magnetic moment of the solenoid. (9×2=18)

SECTION - D

(Answer any one question. Carries a weightage of 4).

- 23. Derive an expression for the magnetic field intensity of on the axis of a circular coil carrying current i. Plot the field against distance.
- 24. Show that electric field is negative gradient of electric potential and obtain
 Poisson's and Laplace's equations. (1×4=4)