K18U 0135
Reg. No.: \qquad
Name: \qquad

VI Semester B.Sc. Degree (CBCSS - Reg./Supple./Imp.)
 Examination, May 2018 CORE COURSE IN PHYSICS 6B14 PHY : Electronics - II
 (2014 Admn. Onwards)

Time: 3 Hours
Max. Marks : 40

SECTION - A

Answer all. Very short answer type. Each question carries 1 mark.

1. RC coupling is used for \qquad amplification.
2. An oscillator employs \qquad feedback.
3. In a non-inverting amplifier, $R_{i}=10 \mathrm{~K} \Omega$ and $R_{f}=100 \mathrm{~K} \Omega$. The closed loop voltage gain is \qquad
4. The inputs to an $X O$ R gate is 1,0 and 1 , the output will be \qquad ($1 \times 4=4$)

SECTION - B

Answer any seven. Short answer type. Each question carries two marks.
-5. What do you mean by operating point?
6. What is meant by negative feedback?
7. What is Barkhausen criterion?

- 8. What do you understand by hybrid parameters ?

9. What do you mean by CMRR ?
10. What do you mean by (i) open-loop voltage gain (ii) closed-loop voltage gain of an op-amp?
11. What is indicated by plus (+), dot(.) and bar (-) in a Boolean expression?
12. State De Morgan's theorems.
13. What is the Boolean equation for CARRY and for SUM in a half adder ?
14. What is a QUAD in a karnaugh map ?

SECTION-C

Answer any four-short essay/problem. Each question carries three marks.
15. Calculate the emitter current in the voltage divider circuit. Also find the value of $\mathrm{V}_{C E}$ and collector potential V_{C}. Given $\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}, \mathrm{R}_{1}=20 \mathrm{~K} \Omega, \mathrm{R}_{2}=5 \mathrm{~K} \Omega$, $R_{C}=2 K \Omega, R_{E}=2 K \Omega$.
16. Calculate the operating frequency and feedback fraction of a Hartley oscillator. Given $\mathrm{L}_{1}=1 \mathrm{mH}, \mathrm{L}_{2}=0.1 \mathrm{mH}, \mathrm{C}=10 \mathrm{pF}$. The mutual inductance between the coils, $\mathrm{M}=0.02 \mathrm{mH}$.
17. In a negative feedback amplifier, the gain without feedback $A_{V}=6400, Z_{\text {in }}=1 \mathrm{~K} \Omega$, $Z_{\text {out }}=5 \mathrm{~K} \Omega, R_{1}=10 \mathrm{~K} \Omega$ and $R_{2}=70 \mathrm{~K} \Omega$. Find (i) feedback fraction, (ii) gain with feedback, (iii) input impedance with feedback, (iv) output impedance with feedback.
18. In an op-amp, the resistance R_{i} to the inverting terminal is $2.2 \mathrm{~K} \Omega$ and closed loop voltage gain is -100 . Find the feedback resistance R_{f}.
19. Simplify the expression: $X=\bar{A} \bar{B} C+A \bar{B} C+A B \bar{C}+A B C$.
20. Explain product of sum method with examples.

SECTION -D

Answer any two. Long essay type. Each question carries five marks.
21. Draw the circuit of a single stage CE amplifier. Explain the function of each components. Also show that $0 / \mathrm{p}$ is 180° out of phase with the i / p.
22. Explain negative feedback. Derive an expression for gain in a negatíve voltage feedback amplifier. What are the advantages of negative feedback?
23. Explain the working of inverting and non inverting amplifier and derive an expression for voltage gain for each case.
24. Explain Karnaugh map. Explain pairs, quads and octets with examples.

