Reg. No.:....

Name:....

VI Semester B.Sc. Degree (CCSS - Reg./Supple./Improv.)

Examination, May 2014

CORE COURSE IN PHYSICS

6B14 PHY: Digital Electronics

Time: 3 Hours

a) A.B + C.D

c) (A.B.C)

Max. Weightage: 30

Instructions: Choose correct answer from Section A. Each bunch carries a wt. of 1.

Answer any six from Sec. B. Each carries a wt. of 1. Answer any nine from Sec. C. Each carries a wt. of 2. Answer any one from Sec. D. Each carries a wt. of 4.

b) (A + B) (C + D)

d) None of these

SECTION-A

C	choose the correct an	Swer. Each hunc	h carrios a	
1.	a) 18	uivalent of binary	number 10101 is	
	2) The 2's compler	ment of 10011 is	c) 21	d) 28
	a) 01100 3) The ASCII code		c) 01111	d) 1100
	a) 4A 4) The hexadecima	b) 41	c) 3A	d) 33
	a) 3A	b) 3B	tal 132 is c) 5A	d) 5C
2.	1) $A.(\overline{A}+B) =$		na suo operatione	
	a) $\overline{A}B$	b) A + B	c) \overline{A} + B	d) AB
	2) A four variable Bo For A = 0, B = 1, The Boolean equa	C = I and I) = 0	gives an output	
	- ani oqui	21101110		

b) $ABC + A\overline{B}C + AB\overline{C}$.

	3) A carrier of 100 V, 10 KHz is modulated by a 50 V The modulation factor is	1000 Hz sine wave.			
18	a) 50% b) Over modula	ation			
	c) 2% d) 10%				
,	As the modulation level is increased, the carrier polyal linereased a) Increased b) Decreased c) Remains the same d) Depends on	the frequency of carrier			
199	SECTION-B	(2×1=2)			
A	Cix. Edon Carries a WI. UT.	(1 each)			
3	3. Add + 5 and -7 in 2's complement binary.				
4	4. Convert decimal 1449 to hexadecimal.	Answ			
5.	5. Write the Boolean equation and logic circuit of an EX-C	PR gate.			
6.	6. Apply De Morgans principle to simplify the boolean equ	vation $\overline{AB} + \overline{C}$.			
	7. Sketch the circuit of a half adder.				
	What do you mean by over modulation?				
9.	9. Draw the frequency spectrum of an amplitude modulated wave.				
10.	1A // 1 *	1010000 NO2A or (6×1=6)			
	SECTION-C	AA (s			
Ar	nswer any nine. Each carries a wt. of 2.	At (2 each)			
11.	Perform the following arithmetic operations on signed bia. Add + 39 and -22.				
	b) Subtract –21 from +39.	Td SA Ve SA SANDON N • CA.IS.			
12.	Explain De Morgan's theorems.				
13.	Simplify the following Boolean equations.				
	a) $(\overline{A} + B) (A + B)$				

- 14. Realise the logic expression $Y = (A + B) (\overline{A} + C) (B + D)$ using basic gates.
- 15. Show the realisation of OR gate and AND gate using NAND gates.
- 16. Draw a truth table for the Boolean equation Y = (A + B)C.
- 17. Show the implementation of a 4 bit parallel adder using full adders.
- 18. Sketch the block diagram of an amplitude modulator.
- 19. What is the need for modulation in communication system?
- 20. An audio signal of 1 KHz is used to modulate a carrier of 500 KHz. Determine the side bands and band width.
- 21. Explain any two advantages of frequency modulation over amplitude modulation.
- 22. What do you mean by pulse modulation?

 $(9 \times 2 = 18)$

SECTION-D

Answer any one. Each carries a wt. of 4.

(4 each)

- 23. A three input digital circuit gives a high output for the following input logic
 - A B C
 - 0 0 0
 - 0 0 1
 - 0 1 0
 - 1 0 0
 - 1 1 1

Draw a K-map for the truth table and obtain a minimised Boolean expression.

24. With the help of necessary diagrams, explain the demodulation of an amplitude modulated signal. (1×4=4)