Reg. No. : \qquad
Name :

V Semester B.Sc. Degree (CBCSS - Reg./Sup./Imp.) Examination, November 2018 (2014 Admn. Onwards) CORE COURSE IN PHYSICS 5B06 PHY: Electrodynamics - I

Time: 3 Hours Max. Marks: 40
Instructions:1) Section A : Answer all questions (Very short answer type. Each question carries 1 mark).
2) Section B : Answer any seven questions (Short answer type. Each question carries 2 marks).
3) Section C: Answer any four questions (Short essay/problem type. Each question carries 3 marks).
4) Section D: Answer any two questions (Long essay type. Each question carries 5 marks).
SECTION - A

1. Inside a charged hollow spherical conductor, the potential is \qquad
2. Write Poisson's equation.
3. The dielectric constant of water is 80 . Its permittivity is \qquad
4. The equation of continuity expresses the conservation of \qquad
SECTION - B
5. State Biot-Savart's law.
6. Give any two properties of equipotential surfaces.
7. Show that $\nabla \times E=0$.
8. Obtain Poisson's equation from Gauss's law.
9. Derive an expression for the energy of a dipole in an electric field.
P.T.O.

K18U 1486

10. Derive the relation between surface current and surface charge densities.
11. What is electric displacement vector? Write its unit.
12. Distinguish between polar and non-polar molecules. Give examples.
13. Find the electric field inside a charged conducting spherical shell using Gauss's theorem. Hence find the electrostatic potential.
14. What are the boundary conditions on potential?

SECTION - C

15. A parallel plate capacitor having capacitance C is half filled with dielectric constant K. What is the new capacitance ?
16. A certain charge Q is to be divided into two parts q and $Q-q$. What is the relationship of Q to q if the two parts placed a given distance apart are to have a maximum Coulomb repulsion?
17. Find the energy of a uniformly charged spherical shell of total charge q and radius R.
18. Find the force between two straight parallel conductors carrying currents.
19. A toroid has a core (non-ferromagnetic) of inner radius 25 cm and outer radius 26 cm around which 3000 turns of a wire are wound. If the current in the wire is 11 A , what is the magnetic field inside the core of the toroid?
20. A wire 1 m long carries a current of 10 A and makes an angle of 30° with a uniform magnetic field $B=1.5 \mathrm{~T}$. Calculate the magnitude and direction of the force on the wire.

SECTION - D

21. Derive an expression for the trajectory of the charged particle moving in transverse electric and magnetic field.
22. Derive an expression for the potential of a uniformly charged conducting sphere inside and outside.
23. Derive the Clausius-Mosotti relation.
24. Derive the differential and integral form of Gauss's law for the field polarization vector P.
