Reg. No. : SPl6cpit 16
Name : \qquad

V Semester B.Sc. Degree (CBCSS-Reg./Sup./Imp.)

 Examination, November 2018 (2014 Admn. Onwards)CORE COURSE IN PHYSICS

5B10PHY-Atomic, Nuclear \& Particle Physics

Time : 3 Hours
Max. Marks : 40

$$
\begin{aligned}
& \text { Instruction: Write answers in English only. } \\
& \text { SECTION - A }
\end{aligned}
$$

Answer all - Very short answer type - Each question carries 1 mark.

1. The de Broglie wavelength of an electron is given by \qquad。
2. The amount of energy needed to remove an electron from an atom in its ground state is called as \qquad
3. The orbital angular-momentum orientations in a magnetic field.

$$
\text { vector of an electron can have } 21+1
$$

4. What are nucleons?
SECTION - B

Answer any seven - Short answer type - Each question carries two marks.
5. State the four fundamental interactions with their range and relative strength.
6. Explain the Pauli's exclusion principle.
7. Write a note on the half-life and mean life of radioactive element.
8. Explain the binding energy of a nucleus.
9. What are symmetric and anti-symmetric wave functions?
10. Explain the total angular momentum of an atom.
11. Discuss the radioactive series.

K18U 1490

12. Write a note on nuclear decay.
13. Explain nuclear fission process.
14. Show that the total energy of an atom is inversely related to its radius. $\quad(7 \times 2=14)$

SECTION - C

Answer any four - Short essay/problem - Each question carries three marks.
15. An electron collides with a hydrogen atom in its ground state and excites it to a state of $n=3$. How much energy was given to the hydrogen atom in this inelastic collision? $-1.9393 \times 10^{-18} \mathrm{~J}$
16. Find the frequencies of revolution of electrons in $n=1$ and $n=2$ Bohr orbits. An electron typically spends about $10^{-8} \mathrm{~s}$ in an excited state before it drops to a lower state by emitting a photon. How many revolution does an electron in an $n=2$ Bohr orbit make in $10^{-8} s$? $2469 \times 10^{23} 45025$
17. If atoms could contain electrons with principal quantum numbers up to and including $n=6$, how many elements would there be ?
18. Find the atomic number of the element which emits $\mathrm{K}_{\alpha} \mathrm{X}$-ray line of wavelength 0.180 nm . (27) 26+1
19. a) Find the energy difference between the spin-up and spin-down states of a proton in a magnetic field of $B=1 \mathrm{~T} . \quad 2.8209 \times 10^{24.5} \mathrm{~J}$
b) What is the Larmor frequency of a proton in this field? $42.573 \times 10^{6} \mathrm{~Hz}$
20. Find the minimum kinetic energy in the laboratory system need by an alpha particle to cause the reaction ${ }^{14} \mathrm{~N}(\alpha, p){ }^{17} \mathrm{O}$. The masses of ${ }^{14} \mathrm{~N},{ }^{4} \mathrm{He},{ }^{1} \mathrm{H}$ and ${ }^{17} \mathrm{O}$ are respectively $14.00307 \mathrm{u}, 4.00260 \mathrm{u}, 1.00783 \mathrm{u}$ and 16.99913 u .
$(4 \times 3=12)$

SECTION - D

Answer any two - Long essay type - Each question carries five marks.
V21. Write an essay on explaining Stern-Gerlach experiment.
22. How X-rays are generated and explain the spectra obtained.
23. Explain $\mathrm{He}-\mathrm{Ne}$ lasers.
24. What is correspondence principle?

