Reg. No. : \qquad
Name : \qquad

III Semester B.Sc. Degree (CBCSS - Reg./Sup./Imp.) Examination, November 2018
(2014 Admn. Onwards)
Core Course in Physics 3B03PHY : ALLIED PHYSICS

Time: 3 Hours

Max. Marks : 40
Instruction: Answer the questions in English only.
SECTION - A

Very short answer type. Each carries 1 mark. Answer all 4 questions.

1. The maximum proportion of volume available in FCC arrangement of spheres is
2. Young's modulus for a plastic body is
3. The time constant of a series R-C circuit is given by
4. Give the unit and dimension of coefficient of viscosity.
SECTION - B

Very short answer type. Each carries 2 marks. Answer 7 questions out of 10.
5. Give one example each of material exhibiting SC, BCC, FCC and HCP structure.
6. Why Zeroth order diffraction is not considered in X-ray diffraction ?
7. Write Laue's equation for x-ray diffraction.
8. Show that theoretical limiting values of Poisson's ratio are -1 and 0.5 .
9. Which rain drops fall faster, big ones or small ones ?
10. Water wets the glass surface while mercury does not why?
11. State Kirchhoff's mesh rule.

K18U 1911

12. Calculate the work done in twisting a wire.
13. State maximum power transfer theorem.
14. Define the term skin depth.
SECTION - C

Short essay/problem type. Each carries 3 marks. Answer 4 questions out of 6 .
15. Draw a plan view of sodium chloride structure and explain.
16. A beam of X-rays incident on a sodium chloride crystal having lattice spacing 0.282 nm . The first Bragg deflection is observed at a glancing angle of 8°. What is the wavelength of X -rays ?
17. What amount of energy will be evolved when 1000 droplets of water of radius 0.0002 m combined to form a single drop ? Surface tension of water $=72 \times 10^{-3} \mathrm{~N} / \mathrm{m}$.
18. Calculate rigidity modules and Poisson's ratio for silver, given Young's modules and bulk modules are $7.25 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ and $11 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$.
19. Define the term critical velocity and derive the expression for it. Also explain the significance of Reynold's number.
20. State and explain Norton's theorem.
($4 \times 3=12$)
SECTION - D

Long essay type. Each carries 5 marks. Answer 2 questions out of 4 .
21. Describe the rotating crystal method for diffraction of x-rays. How do layer lines form?
22. Describe with necessary theory how you would determine the rigidity modulus of as wire experimentally by using torsion pendulum.
23. Derive Poiseuille's formula for the rate of flow of a liquid through a capillary tube. Describe a laboratory method for determining the coefficient of viscosity of a liquid at room temperature.
24. State Thevenin's theorem. Explain how to Thevenize a given circuit. Discuss how Thevenin's equivalent circuit differs from Norton's equivalent circuit.

