Name :....

Second Semester FYUGP Zoology and CB Examination APRIL 2025 (2024 Admission onwards) KU2MDCZCB102 (MOLECULAR PHYLOGENETICS) (DATE OF EXAM: 26-4-2025)

Time	e : 90 min Maxim	mum Marks : 50
Ρ	Part A (Answer any 6 questions. Each carries 2 marks)	
1.	Define the term "phylogeny."	2
2.	What is the significance of protein sequences in bioinformatics?	2
3.	List any two methods used for multiple sequence alignment.	2
4.	What challenges are associated with multiple sequence alignment	t? 2
5.	Why can Maximum Parsimony sometimes lead to multiple equal	ly optimal trees? 2
6.	What is the role of genomic sequencing in molecular phylogeneti	cs? 2
7.	How does the study of pathogen evolution using molecular phyloge to treatment strategies?	enetics contribute 2
8.	What is GenBank, and why is it important for nucleotide and retrieval?	protein sequence 2
	Part B (Answer any 4 questions. Each carries 6 marks)	
9.	How can phylogenetic methods help in understanding the evolution of different plant species?	onary adaptations 6
10.	What steps would you take to analyze mutations in a DNA sequence databases?	ence using public 6
11.	Given a set of misaligned sequences, analyze how improper alig phylogenetic tree construction.	nment can affect 6
12.	Evaluate the accuracy of the Neighbor-Joining method when app evolutionary data, considering factors like sequence length and n	lied to real-world umber of species. 6
13.	Compare and contrast the applications of molecular phylogenet bacterial versus viral diseases, highlighting the unique challenges	ics in diagnosing for each. 6
14.	Using GenBank, retrieve a protein sequence for a specific enzyme you would use this data to predict the enzyme's structure and fu	and explain how inction. 6

Part C (Answer any 1 question(s). Each carries 14 marks)

- 15. Develop a comprehensive guide for retrieving both nucleotide and protein sequences from GenBank using various bioinformatics tools. Discuss the importance of sequence retrieval in sequence alignment and annotation processes. 14
- 16. (a) "Design an experimental approach to compare the accuracy of phenetic and cladistic methods in phylogenetic classification." 7
 - (b) "Critically analyze how molecular phylogenetics has revolutionized our understanding of species evolution." 7