Reg. No. : \qquad

Name :

Fifth Semester B.Sc. Degree (CBCSS - 2014 Admn. Regular)
Examination, November 2016 CORE COURSE IN PHYSICS 5B07 PHY : Thermal Physics

Time : 3 Hours
Max. Marks : 40

SECTION - A

Answer all. Very short answer type. Each question carries 1 mark.

1. During an adiabatic process \qquad is constant.
2. Electric charge is an \qquad parameter.
3. Entropy is a measure of \qquad
4. Bose-Einstein statistics is applied to particles which are \qquad $(4 \times 1=4)$
SECTION - B

Answer any seven. Short answer type. Each question carries two marks.
5. State and explain Zeroth law of thermodynamics.
6. What is a refrigerator and define its coefficient of performance.
7. What is Carnot's theorem?
8. Derive an expression for efficiency from T-S diagram of a Carnot engine.
9. What are thermodynamic potentials ?
10. What is meant by principle of increase of entropy?
11. State and explain equipartition theorem.
12. Briefly explain Black body radiation.
13. What is Helmholtz free energy?
14. Define root mean square velocity. Write an expression for the root mean square velocity.

SECTION-C

Answer any four. Short essay/problem. Each question carries three marks.
15. Deduce the value of γ for monoatomic and diatomic gases.
16. A Carnot's refrigerator takes heat from water at $0^{\circ} \mathrm{C}$ and rejects it to a room at temperature $27^{\circ} \mathrm{C} .1 \mathrm{~kg}$ of water at $0^{\circ} \mathrm{C}$ is to be changed into ice at $0^{\circ} \mathrm{C}$. How many calories of heat are rejected to the room? What is the workdone by the refrigerator in this process? What is the coefficient of performance of the machine?
17. A monoatomic ideal gas of volume 1 litre at a pressure of 8 atmosphere undergoes adiabatic expansion until the pressure drops to 1 atmosphere. How much work is done $?$ (1 atmosphere $=10^{5} \mathrm{~N} / \mathrm{m}^{2}$).
18. A Carnot engine takes 200 calories of heat from a source at temperature 400 K and rejects 150 calories of heat to sink. What is the temperature of sink ? Also calculate the efficiency of the engine.
19. Calculate the increase in entropy of 1 kg of ice when it is converted into steam. Specific heat of water $1 \mathrm{Kcal}_{\mathrm{kg}}{ }^{-1} \mathrm{c}^{-1}$. Latent heat of ice $80 \mathrm{cal} / \mathrm{g}$ and Latent heat of steam $540 \mathrm{cal} / \mathrm{g}$.
20. Calculate the melting point of ice under a pressure of 2 atm . it is given that the melting point ice under 1 atmospheric pressure is 273.16 K . Latent heat of fusion of ice is $79.6 \mathrm{cal} / \mathrm{g}$ and at the melting point specific volume of ice is 1.0908 cc and that of water is 1.0001 cc . One $\mathrm{atm}=1.013 \times 10^{6} \mathrm{dynes} / \mathrm{cm}^{2}$.

SECTION - D

Answer any two. Long essay type. Each question carries five marks.
21. Derive Maxwells 4 thermodynamical relations. Use one of them to obtain Clausius-Clapeyron's Latent heat equation.
22. State and prove Clausius theorem for entropy and write down Clausius mathematical statement of second law.
23. Derive an expression for workdone in a quasi-static process, hence to find the workdone in

1) an isothermal process
2) adiabatic process
3) an isobaric process.
24. State postulate of kinetic theory. Hence derive the expression for pressure exerted by ideal gas.
