Reg. No. :
Name : \qquad
I Semester B.Sc. Degree (CCSS - Reg./Supple./Improv.)

Examination, November 2015

Core Course in Physics
1 B01 PHY : PHYSICS PRIMERS
(2014 Admn. Onwards)
,
Time : 3 Hours
Max. Marks : 40
Instruction: Write answers only in English.
SECTION - A

Answer all questions. Very short answer type, each question carries 1 mark.

1. Light radiation of frequency u is quanta of energy $E=$ \qquad
2. Albert Einstein was awarded Nobel prize for \qquad
3. The semiconductor device which was known as "wonder child of electronics" is
\qquad
4. The operator ∇^{2} is called \qquad

SECTION - B

Answer any seven. Short answer type, each question carries 2 marks.
5. "Magnetic monopole doesnot exist", show it mathematically.
6. State Stokes theorem.
7. Distinguish between Transverse wave and Longitudinal wave with example.
8. Explain S.H.M. and give one example.
9. "Universe is expanding". Illustrate with Hubble's law.
10. Briefly explain L.H.C Experiment.
11. What do you mean by "Chandrasekhar limit"?

K15U 0593

13. State and explain Fourier theorem.
14. State the postulates of Einstein's Special Theory of Relativity.
SECTION - C

Answer any four. Short essay/problem type, each question carries 3 marks.
`15. Analyse Square wave using Fourier theorem.
16. Given $f(x, y, z)=r$, Evaluate ∇r.
17. Equation of a progressive wave is $y=A \cos 240(t-x / 32)$, where x and y are in meters. Find:

1) Velocity
2) Frequency
3) Phase difference between two points 0.5 m apart.
18. Prove that $\nabla .(\nabla \times F)=0$.
19. Explain Ultra Violet Catastrophy.
20. Give the volume element for Cylindrical coordinate system and hence find out the volume of a cylinder of radius R .
$(4 \times 3=12)$

SECTION - D

Answer any two. Long essay type, each question carries 5 marks.
21. Discuss the development of quantum mechanics from the limitations of Classical mechanics.
22. Check product rule $\nabla \cdot(\vec{A} \times \vec{B})=\vec{B} \cdot(\nabla \times \vec{A})-\vec{A} \cdot(\nabla \times \vec{B})$ by calculating eachf term separately for the functions $\vec{A}=x i+2 y j+3 z k$ and $\vec{B}=3 y i-2 x j$
23. Explain composition of two rectangular simple harmonic motions of same time period and Lissajous figure.
24. Explain longitudinal waves in gases.

