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Exp.No.1.13 

Liquid Lens 
Refractive index of a liquid and material of the lens with mercury 

 
Aim: To determine the refractive index of a given liquid and the material of a lens by forming a 
liquid lens and by using mercury to find the radius of curvature of the lens. 
Apparatus: A convex lens of focal length 10 or 15 cm, given liquid, a plane mirror, a pointer 
(a knitting needle or pin fixed on an eraser) arranged on a retort stand, mercury in a dish, scale, 
etc. 
Theory: The relationship between the focal length, radii of curvature and the refractive index of 
a lens is given by the lens maker’s formula, 
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where, ‘f’ is the focal length, R1 and R2 are the radii of curvature of the lens and P is the 
refractive index of the material of the lens. Applying sign convention R1 is positive and R2 is 
negative. Thus eqn.1 becomes, 
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The radius of curvature is determined by Boy’s method. When the image is formed side by side 
of the object by the reflected light from the corresponding concave surface, the radius of 
curvature is given by, 
 

       R =  fd
f d�

        (4) 

where, d is the distance between the lens and the object when the reflected image is formed side 
by side of the object and f is the focal length of the lens.  

If a plano-concave liquid lens is formed in between the first face of the lens and a plane 
mirror, as shown in fig.b, the radius of curvature of its upper side is R = �R1 and that of the 
second face is infinity. Then for the liquid lens eqn.1 becomes, 
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?          Pl =  1R1
fl

�         (5) 

where, R1 is the radius of curvature of that face of the lens in contact with the liquid and fl is the 
focal length of the liquid lens. In experiments we usually find out the focal length of the 
combination of lens and the liquid lens. If it is F, 
we can write, 
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F

 =  1 1
f fl

�   (6) 

         fl =  Ff
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Procedure 
To determine the focal length of the convex lens:  

A plane mirror is placed horizontally on the 
base of a retort stand as shown in fig.a. A convex 
lens of 10 or 15 cm is placed on the mirror strip 
with its marked face is in contact with the mirror. 
The pointer (object) is arranged above the lens as 
shown in fig.a. Looking from vertically above with 
one eye closed, the lens and mirror arrangement is 
adjusted so that the tip of the object and the tip of 
the image coincide. Then looking from above, 
move your head forward and backward (or left and 
right). If the image gets separated from the object, the pointer is slowly lowered or raised till the 
image and object does not get separated when you move your head forward or backward. There 
is only one position of the pointer for the given lens at which the object and the image move 
together without parallax when you move your head forward or backward. At this position the 
object is at the principal focus of the lens and the image has the same size as that of the object. 

Fig.a: Lens alone 

Incident and 
reflected rays 

Image Object 

Fig.b: Lens and liquid lens combination 

Incident and 
reflected rays 

Image Object 

Plano-concave 
Liquid lens 

Fig.c: Lens floating in mercury 

Incident and 
reflected rays 

Image Object 
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The distances of the pointer from the top of the lens and the plane mirror (bottom of the lens) are 
measured. Their average gives the focal length of the lens. Repeat the entire process two or three 
times and the mean value of ‘f’ is determined.  
To determine the focal length F of the combination of lens and the liquid lens 

The convex lens is removed. Two or three drops of liquid are placed on the mirror. Then 
the convex lens is placed on the liquid drops with its marked face in contact with the mirror. 
Now a plano-concave liquid lens is formed in between the convex lens and the plane mirror as 
shown in fig.b. The radius of curvature of its curved face is same as that of the marked face of 
the convex lens. The average focal length F of the combination is determined as described in the 
case of convex lens alone. The focal length of the liquid lens fl is calculated using eqn.7. 
To determine the radius of curvature of the marked face and the other face using mercury 

The radii of curvature of the convex lens are determined by Boy’s method. The method is 
as follows. The convex lens is floated in mercury, contained in a dish, with the marked face of 
the lens in contact with mercury. The position of the pointer for which the image is seen without 
parallax is determined as described in the case of convex lens alone. The height of the pointer 
from the top of the lens is measured. Adding to it half the thickness of the lens (obtained in the 
previous cases) we get the distance ‘d’. Using ‘d’ in eqn.4 we get the radius of curvature of the 
marked face of the lens. By similar method the radius of curvature of the other face of the lens 
also is determined. The refractive index of the material of the lens is calculated using eqn.3 and 
the refractive index of the liquid by the eqn.5.   

 
x When looking above you may see the image of the tip of the retort stand. So make sure 

that you are viewing the image of the pointer. We can identify the image of the pointer 
by moving the pointer to and fro sidewise slightly. If the image also moves you can 
identify it.   

 Observation and tabulation 
To determine the focal length of the convex lens 

Trial 
No. 

Distance of the pointer 
from the top of the convex 

lens in cm. 

Distance of the pointer 
from the surface of the 

plane mirror in cm. 

Focal length 
of the convex 
lens ‘f’ in cm 

1    
2    
3    

          Mean  ……………… 

 Focal length of the convex lens, f =  …….. cm =  …….. m 

To determine the focal length of the combination of convex lens and liquid lens 

          Mean  ……………… 
 

Trial 
No. 

Distance of the pointer 
from the top of the convex 

lens in cm. 

Distance of the pointer 
from the surface of the 

plane mirror in cm. 

Focal length of the 
combination of lens and 

liquid lens ‘F’ in cm 
1    
2    
3    
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 Focal length of the combination of convex lens and liquid lens,  
                    F =  …….. cm =  …….. m 

 Focal length of liquid lens, fl  =  Ff
f F�

  =  …… cm  =  …….. m 

To determine the radii of curvature of the convex lens 

 Trial 
No. 

Distance of the pointer 
from the top of the 
convex lens in cm. 

Half the 
thickness of 

the lens in cm. 

 ‘d’   
cm 

Mean 
‘d’ 
cm 

Marked face of 
the lens in contact 

with mercury 

1     
2    
3    

Other face in 
contact with 

mercury 

1     
2    
3    

 

Radius of curvature of the marked face of the lens, R1   =  fd
f d�

  =  …….. cm  =  ….. m 

Radius of curvature of the other face of the lens,    R2 =  fd
f d�

  =  …….. cm  =  ….. m 

Refractive index of the material of the lens,   P =  
� �

1 2

1 2

R R1
f R R

�
�

 = ……….. 

       =   ……….. 
Radius of curvature of the liquid lens (radius of curvature of marked face of the lens) 
               R1 =  …… cm =  …….. m 

Refractive index of the liquid,       Pl =  1R1
fl

�   =  …….. 

       =  …………. 
 
Result 
 Refractive index of the material of the lens =  ………. 

 Refractive index of the given liquid  =  ………. 

  
 *Standard data 
  

Material Refractive index 
Water 1.33 
Glycerin (glycerol) 1.473 
Turpentine 1.48 
Olive oil 1.48 
Glass (crown) 1.48a1.61 
Glass (flint) 1.53a1.96 
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Exp.No.1.14 
Liquid Lens 

Refractive index of a liquid and material of the lens with another liquid of 
known refractive index 

Aim: To determine the refractive index of a liquid and the material of a lens by forming liquid 
lenses with the given liquid and another liquid of known refractive index.  
Apparatus: A convex lens of focal length 10 or 15 cm, given liquid, liquid of known refractive 
index (water), a plane mirror, a pointer (a knitting needle or pin fixed on an eraser) arranged on a 
retort stand, scale, etc. 

Theory: The relationship between the focal length, radii of curvature and the refractive index of 
a lens is given by the lens maker’s formula, 
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where, ‘f’ is the focal length, R1 and R2 are the radii of curvature of the lens and P is the 
refractive index of the material of the lens. Applying sign convention R1 is positive and R2 is 
negative. Thus eqn.1 becomes, 
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Fig.a: Lens alone 

Incident and 
reflected rays 

Image Object 

Fig.b: Lens and liquid lens combination 

Incident and 
reflected rays 

Image Object 

Plano-concave 
Liquid lens 
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The radius of curvature is determined by Boy’s method. When the image is formed side by side 
of the object by the reflected light from the corresponding concave surface, the radius of 
curvature is given by, 
 

       R =  fd
f d�

        (4) 

where, d is the distance between the lens and the object when the reflected image is formed side 
by side of the object and f is the focal length of the lens.  

If a plano-concave lens is formed in between the first face of the lens and a plane mirror, as 
shown in fig.b, the radius of curvature of its upper side is R = �R1 and that of the second face is 
infinity. Then for the liquid lens eqn.1 becomes, 
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where, R1 is the radius of curvature of that face of the lens in contact with the liquid and fl is the 
focal length of the liquid lens. In experiments we usually find out the focal length of the 
combination of lens and the liquid lens. If it is F, we can write, 
 

         1
F

 =  1 1
f fl

�          (6) 

         fl =  Ff
f F�

        (7) 

In this experiment we use a liquid of known refractive index, say water, to find out the radii of 
curvature of the lens. If the first face of the convex lens is in contact with water, eqns.5 and 7 
become,  

                    Pw =  1

w1

R1
f

�   

   1.333 =  1

w1

R1
f

�  

?          R1 =  w10.333f�         (8a) 

where,        fw1 =  w1

w1

F f
f F�

        (9a) 
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When the second face of the lens is in contact with water,   

          R2 =  w20.333f�         (8b) 

where,        fw2 =  w2

w2

F f
f F�

        (9b) 

Fw1 and Fw2 are the focal lengths of the combination of convex lens and water lens when the first 
face and the second face, respectively, are in contact with water.   
 
Procedure: Find out the focal length ‘f’ of the convex lens, the focal length ‘Fw1’ of the 
combination of convex lens and water lens when the first face of the convex lens in contact with 
water, the focal length ‘Fw2’ of the combination of convex lens and water lens when the second 
face of the convex lens in contact with water and the focal length ‘F’ of the combination of 
convex lens and the liquid lens (with first face in contact with the liquid) as described in 
exp.No.13. Calculate R1, R2, fw1, fw2, fl, P and Pl using eqns.8a, 8b, 9a, 9b, 7, 3 and 5 
respectively. 
 
Observation and tabulation 
 To determine the focal length of the convex lens 

Trial 
No. 

Distance of the pointer 
from the top of the convex 

lens in cm. 

Distance of the pointer 
from the surface of the 

plane mirror in cm. 

Focal length 
of the convex 
lens ‘f’ in cm 

1    
2    
3    

          Mean  ……………… 

 Focal length of the convex lens, f =  …….. cm =  …….. m 
To determine the focal length of the combination of convex lens and water lens with first 
face in contact with water 

          Mean  ……………… 

 Focal length of the combination of convex lens and water lens,  
                Fw1 =  …….. cm =  …….. m 

 Focal length of water lens with first face in contact with water, 

            fw1  =  w1

w1

F f
f F�

  =  …… cm  =  …….. m 

 
 

Trial 
No. 

Distance of the pointer 
from the top of the convex 

lens in cm. 

Distance of the pointer 
from the surface of the 

plane mirror in cm. 

Focal length of the 
combination of lens and 
water lens ‘Fw1’ in cm 

1    
2    
3    
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To determine the focal length of the combination of convex lens and water lens with second 
face in contact with water 

          Mean  ……………… 
 Focal length of the combination of convex lens and water lens,  
                Fw2 =  …….. cm =  …….. m 

 Focal length of water lens with second face in contact with water, 

            fw2  =  w2

w2

F f
f F�

  =  …… cm  =  …….. m 

To determine the focal length of the combination of convex lens and liquid lens 

          Mean  ……………… 
 Focal length of the combination of convex lens and liquid lens,  
                    F =  …….. cm =  …….. m 

 Focal length of liquid lens, fl  =  Ff
f F�

  =  …… cm  =  …….. m 

Radius of curvature of the first face of the convex lens,        R1 =  w10.333f�  =  …… cm 
Radius of curvature of the second face of the convex lens,    R2 =  w20.333f�  =  …… cm 

Refractive index of the convex lens,    P =  
� �

1 2

1 2

R R1
f R R

�
�

 =  …….  =  …….. 

Refractive index of the given liquid,  Pl =    1R1
fl

�   =  …………… =  …….. 

Result 
 Refractive index of the material of the lens =  ………. 

 Refractive index of the given liquid  =  ………. 

  
*Standard data: Refer exp.No1.13 
  
  
   

Trial 
No. 

Distance of the pointer 
from the top of the convex 

lens in cm. 

Distance of the pointer 
from the surface of the 

plane mirror in cm. 

Focal length of the 
combination of lens and 
water lens ‘Fw2’ in cm 

1    
2    
3    

Trial 
No. 

Distance of the pointer 
from the top of the convex 

lens in cm. 

Distance of the pointer 
from the surface of the 

plane mirror in cm. 

Focal length of the 
combination of lens and 

liquid lens ‘F’ in cm 
1    
2    
3    
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Exp.No.1.15 
Deflection Magnetometer- Tan A and Tan B 

Aim: To find the moment of a bar magnet using deflection magnetometer in Tan A position and 
Tan B position. 
Apparatus: A deflection magnetometer consisting of a rectangular wooden frame with a 
compass box at the middle, given bar magnet, etc. 
Theory: The principle of the deflection 
magnetometer is that a magnetic needle will 
align itself in the direction of the resultant 
magnetic field. Let B and Bh are two mutually 
perpendicular fields. The direction of their 
resultant field is given by, 
 

    tanT =  
h

B
B

 

Or,        B =  Bh tanT  (1) 

where, T is the angle made by the resultant field with the field Bh. In the deflection 
magnetometer experiment Bh is the horizontal component of the earth’s magnetic field and B is 
the magnetic field produced by a bar magnet.  
Tan A position: In this case the bar magnet is placed on the deflection magnetometer such that 
the axial field (in the horizontal plane) produced by it is perpendicular to the horizontal 
component of earth’s magnetic field. Then the magnetic needle of the compass box aligns in the 
direction of the resultant magnetic field. Let T be the deflection produced in the compass box, 
when the bar magnet of moment 
‘m’ and length 2l is placed at a 
distance ‘d’ from the centre of the 
compass box. Then eqn.1 becomes, 
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0
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μ 2md
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        m =   
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h
0

d4π B tan θ
μ 2d
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where,  7 2
0μ 4π 10  NA� � u  is the permeability of the free space.   

Tan B position: In this arrangement of the deflection magnetometer, 
the bar magnet is placed such the equatorial field (in the horizontal 
plane) produced by it is perpendicular to the horizontal component of 
earth’s magnetic field. If T is the deflection produced in this case, 
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0
3

2 2 2

μ m
4π d l�

 =  Bh tanT 

         m =  � �
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2 2 2
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4π d B tan θ
μ

l�   (3) 

B 

Bh 

T 
Bh 

B 

BR 

T 

Magnetic needle 

Bh 

2l 

B 

d 
Bar magnet 

Compass box 

Bh 

2l 
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d 

Bar magnet 

Compass box 
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Procedure:  
The deflection magnetometer consists of a rectangular wooden frame with a compass box 

at the centre of it. A small magnetic needle is pivoted at the centre of the compass box. An 
aluminum pointer is attached perpendicular to the magnetic needle. A scale is fixed on the 
wooden frame. The circular scale in the compass box is graduated in degrees. It has four 
quadrants with two 0 and two 90 markings.  

Tan A position: The deflection magnetometer is placed on a 
table or on a wooden stool (It is easy to rotate the 
magnetometer and to take readings of the compass box if it is 
placed on a stool). Remove all magnets and magnetic 
materials from the vicinity of the magnetometer. In order to 
set the deflection magnetometer in the Tan A position, the 
compass box alone is rotated such that the 0-0 line is along 
the axis of the magnetometer as shown in the fig.a. Then the 
magnetometer as a whole is rotated till the aluminum pointer 
reads 0-0. Now the arms of the magnetometer are in the west-
east direction and the compass needle is along the south-
North direction. 

Now the given bar magnet, whose moment is to be 
determined, is placed on one of the arms of the magnetometer 
at a distance ‘d’ from the centre of the compass box with its 
axis coincides with the axis of the magnetometer as shown in 
fig.a (‘d’ is the distance between the centre of the magnet to 
the centre of the compass box). Take two readings 
corresponding to the two ends of the aluminum pointer. Now 
the magnet is reversed at this position without changing ‘d’ 
and two more deflections are noted. Then the magnet is taken 
to the other arm of the magnetometer and is placed at the 
same distance ‘d’ and the corresponding two deflections are 
noted. The magnet is reversed there and two more readings 
are noted. The average of these eight readings gives the deflection ‘T’ corresponding to the 
distance ‘d’. The entire experiment is repeated for other distances. Measure the length (L = 2l) of 
the magnet using a vernier calipers. The moment of the magnet is calculated using eqn.2. 
Tan B position: In order to set the deflection magnetometer in the Tan B position, the compass 
box alone is rotated such that the 90-90 line is along the axis of the magnetometer as shown in 
the fig.b. Then the magnetometer as a whole is rotated till the aluminum pointer reads 0-0. Now 
the arms of the magnetometer are in the south-north direction and the compass needle is along 
the west-east direction. In this case the bar magnet is to be placed such that its equatorial field at 
the centre of the compass box is along the west-east direction as shown in the fig.b. Find out the 

0 0 
90 

90 

S 

N 

W E 

Fig.a: Tan A position 

0 0 
90 

90 

S 

N 

W E 

Fig.b: Tan B position 
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eight deflections of the pointer as described in the case of tan A position and the average T is 
calculated. The moment of the magnet is calculated using eqn.3.  

x  ‘d’ is the distance between the centre of the magnet to the centre of the compass box. 
x The distance ‘d’ is such that the deflection is in between 30q and 60q. 

Observation and tabulation 
To determine the length of the magnet using vernier calipers 
 Value of one main scale division (1 m s d) =  ………. cm 
 Number of divisions on the vernier scale, x =  ………. 

  Least count,      L. C =  Value of one main scale division
Number of divisions on the vernier scale

 = 1 m s d
x

= ……. cm 

Trial No. M S R 
cm 

V S R L = M S R + V S RuL C 
cm 

Mean length L  
cm 

     
    
    
    
    

 
Length of the magnet         L =  …….. cm =  ……… m 
Half the length of the magnet,         l =  L/2 =  ……… m 

Tan A position 
Distance 

‘d’ m 
Deflections in degree Mean T 

degree 
Moment ‘m’ 

Am2 1 2 3 4 5 6 7 8 
           
           
           
           

          Mean …………. 
Tan B position 

Distance 
‘d’ m 

Deflections in degree Mean T 
degree 

Moment ‘m’ 
Am2 1 2 3 4 5 6 7 8 

           
           
           
           

          Mean …………. 
Result 
 Moment of the magnet using Tan A position,  m =  ………. Am2   
 Moment of the magnet using Tan B position,  m =  ………. Am2   
 
*Standard data 
 Permeability of the free space,     0μ  =  7 24π 10  NA� �u   
 Horizontal component of earth’s magnetic field Bh =  0.38u10�4 T  
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Exp.No.1.16 
Deflection Magnetometer-Tan C position 

Aim: To determine the pole strength and hence the moment of a bar magnet in Tan C position 
using a deflection magnetometer. 
Apparatus: Deflection magnetometer, 
the given bar magnet, etc. 
Theory: Even though the Hilbert model 
of magnetic dipole is unphysical we can 
use it to calculate the field due to a bar 
magnet. According to this model a 
magnet consists of two magnetic poles (a 
north pole and a south pole) of pole 
strength ‘P’.  In the Tan C arrangement 
the horizontal components of the fields 
due the two poles are in the west-east direction. 

 Magnetic field at O due to the north pole, BN =  0
2

μ P
4π d

 (West-east direction) (1) 

 Magnetic field at O due to the south pole, BS =  
� �

0
2 2

μ P
4π d L�

   (2) 

 Horizontal component of the field due to the south pole, BSh  =  BS cosT  

    =  
� � � �

0
12 2 2 2 2

μ P d
4π d L d L� �

 =  
� �

0
3

2 2 2

μ Pd
4π d L�

  (3) 

?  Resultant horizontal field due to the bar magnet, B =  
� �

0 0
32

2 2 2

μ μP Pd
4π d 4π d L

�
�

 

        =    
� �

0
32

2 2 2

μ P 1 d
4π d d L

ª º
« »�« »�« »¬ ¼

 (4) 

This field is in the west-east direction. In the Tan C position, we arrange the deflection 
magnetometer in the Tan A position. Therefore the remaining theory is same as the case of Tan 
A position. If the compass needle makes a deflection T, we can write, 
 
        B =  hB tanθ   

        
� �

0
32

2 2 2

μ P 1 d
4π d d L

ª º
« »�« »�« »¬ ¼

 =  hB tanθ  

       P =  

� �

h

0

32
2 2 2

B tan θ4π
μ

1 d
d d L

ª º
« »�« »�« »¬ ¼

      (5) 
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 Dipole moment of the magnet,     m =  PL      (6) 

Procedure 

The deflection magnetometer is arranged in the Tan A position. The given bar magnet is 
placed vertically on one of the arms of the deflection magnetometer at a distance ‘d’ from the 
centre of the compass box as shown in the fig.b. Take two readings corresponding to the two 
ends of the aluminum pointer. Now the magnet is reversed at this position without changing ‘d’ 
and two more deflections are noted. Then the magnet is taken to the other arm of the 
magnetometer and is placed at the same distance ‘d’ and the corresponding two deflections are 
noted. The magnet is reversed there and two more readings are noted. The average of these eight 
readings gives the deflection ‘T’ corresponding to the distance ‘d’. The entire experiment is 
repeated for other distances. Measure the length, L, of the magnet using a vernier calipers. The 
pole strength of the magnet is calculated using eqn.5 and the dipole moment by eqn.6. 
 
Observation and tabulation 
To determine the length of the magnet using vernier calipers 
 Value of one main scale division (1 m s d) =  ………. cm 
 Number of divisions on the vernier scale, x =  ………. 

  Least count,      L. C =  Value of one main scale division
Number of divisions on the vernier scale

 = 1 m s d
x

= ……. cm 

Trial No. M S R 
cm 

V S R D = M S R + V S RuL C 
cm 

Mean length L  
cm 
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Fig.b: Tan C position 
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Tan C position 
Distance 

‘d’ m 
Deflections in degree Mean T 

degree 
Pole strength ‘P’ 

A.m 1 2 3 4 5 6 7 8 
           
           
           
           

          Mean …………. 
 
 Dipole moment of the magnet,     m =   PL =  …….. A.m2 
 
Result 
 Pole strength of the given bar magnet =  ………. A.m 

 Dipole moment of the given bar magnet  =  ………. A.m2 

 
 
*Standard data 
 Permeability of the free space,     0μ  =  7 24π 10  NA� �u   
 Horizontal component of earth’s magnetic field Bh =  0.38u10�4 T  
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Exp.No.1.17 

Deflection Magnetometer & Box type vibration magnetometer- 
Determination of m and Bh 

Aim: To determine the dipole moment ‘m’ and the horizontal component of earth’s magnetic 
field ‘Bh’ using deflection magnetometer and box type vibration magnetometer. 
Apparatus: A deflection magnetometer, a box type vibration magnetometer, given magnet, 
etc. 
Theory 
(a) Deflection magnetometer: We have discussed the theory of deflection magnetometer in 
exp.No.15. When the deflection magnetometer is arranged in the Tan A position, 
 

    
� �

0
22 2

μ 2md
4π d l�

 =  Bh tanT 

                
h

m
B

 =   
� �22 2

0

d4π tan θ
μ 2d

l�
      (1) 

where, ‘m’ is the dipole moment of the given bar magnet, Bh is the horizontal component of 
earth’s magnetic field, P0 is the permeability of the free space, ‘d’ is the distance between the 
centre of the magnet and the centre of the compass box, ‘l’ is the half the length of the magnet 
and T is the average deflection made by the compass needle.  

When the magnetometer is arranged in the Tan B position, 

           
� �

0
3

2 2 2

μ m
4π d l�

 =  Bh tanT 

               
h

m
B

 =  � �
3

2 2 2

0

4π d tan θ
μ

l�        (2) 

(b) Box type vibration magnetometer: When a magnet suspended in a magnetic field of 
strength ‘B’ is slightly tilted to one side and is released, it will execute simple harmonic motion 
with a time period, 

          T =  I2π
mB

        (3) 

where, I is the moment of inertia of the suspended magnet. For a bar magnet of length L and 
breadth ‘b’, the moment of inertia about an axis perpendicular to its length and passing through 
its centre is, 

           I =  
2 2L bM
12

§ ·�
¨ ¸
© ¹

      (4) 

where, M is the mass of the bar magnet. If the bar magnet is suspended in the earth’s magnetic 
field eqn.3 becomes, 
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        T =  
h

I2π
mB

   

    mBh =  
2

2

4π I
T

  (5) 

Let mBh = x and 
h

m
B

 = y, then, 

      xy =  m2   
? Moment of the magnet, m = xy   (6) 

      x
y

 =  2
hB  

? Horizontal component of earth’s magnetic field,        Bh =  x
y

    (7) 

Procedure 
To find 

h

m
B

using deflection magnetometer: As described in Exp.No.15 
h

m
B

 is determined.  

To find mBh using box type vibration magnetometer:  The magnetic meridian is drawn on the 
table using a compass box. This can be done as follows. The compass box is placed on the table 
and is rotated till the aluminum pointer reads 0-0. Then put chalk marks on the table against the 
90-90 markings. The direction of the magnetic meridian is obtained by joining the chalk marks. 
The box type vibration magnetometer is arranged with its length parallel to the magnetic 
meridian. The given bar magnet is then suspended horizontally and parallel to the magnetic 
meridian with its north pole pointing geographic north. The suspended magnet is set into 
oscillation by bringing another magnet near to it. The time taken for 10 oscillations is determined 
twice and the mean period of oscillation ‘T’ is found out.  

Mass of the magnet is determined using a common balance. The length and breadth of the 
magnet are measured using a vernier calipers. Using eqns.1, 2, 4, 5, 6 and 7 m and Bh are 
calculated.  

x The suspended magnet is set into oscillation by bringing another magnet near the north 
pole or south pole of it in the perpendicular direction and is taken away.  

x Remember that the earth’s magnetic field is from geographic south to geographic north. 
Geographic south is magnetically north and geographic north is magnetically south. That 
is why a freely suspended magnet aligns itself in the magnetic meridian.  

Observation and tabulation 
To find mass ‘M’ of the magnet 
Load in the pans of the balance Turning points Resting 

point 
Sensibility 

1 2

0.01S
R R

 
�

 
Correct weight 

M=W+S(R1�R0) 
gm 

left Right (gm) Left (3) Right (2) 

Nil Nil   R0 = …   
Magnet W   R1 = …   

W + 0.01   R2 = …   
Mass of the magnet,       M =  ………. gm = ………. kg 

S N 
Box type vibration magnetometer 
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To determine the length and breadth of the magnet using vernier calipers 
 Value of one main scale division (1 m s d) =  ………. cm 
 Number of divisions on the vernier scale, x =  ………. 

  Least count,      L. C =  Value of one main scale division
Number of divisions on the vernier scale

 = 1 m s d
x

= ……. cm 

 
Trial No. M S R 

cm 
V S R L = M S R + V S RuL C 

cm 
Mean length L  

cm 
     
    
    
    
    

 
Length of the magnet         L =  …….. cm =  ……… m 

Half the length of the magnet,         l =  L/2 =  ……… m 

Trial No. M S R 
cm 

V S R b = M S R + V S RuL C 
cm 

Mean breadth b  
cm 

     
    
    
    
    

 

Tan A position 
Distance 

‘d’ m 
Deflections in degree Mean T 

degree � �22 2

h 0

dm 4πy tan θ
B μ 2d

l�
   1 2 3 4 5 6 7 8 

           
           
           

          Mean …………. 
Tan B position 

Distance 
‘d’ m 

Deflections in degree Mean T 
degree � �

3
2 2 2

h 0

m 4πy d tan θ
B μ

l  �  1 2 3 4 5 6 7 8 

           
           
           

          Mean …………. 

   Mean,          y =  
h

m
B

 =  ………… 
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To find mBh 

Time for 10 oscillations Period T 
1 2 3 Mean 

     
  

Moment of inertia of the bar magnet,         I =  
2 2L bM
12

§ ·�
¨ ¸
© ¹

 =  ………. =  ………… 

      x  =   mBh =   
2

2

4π I
T

  =  …………. =  …………    

  
  Moment of the magnet, m = xy     =  ………… =  ……… Am2   

  Horizontal component of earth’s magnetic field, Bh =  x
y

 =  ………… 

        =  …………. tesla   
   
Result 
 Dipole moment of the given bar magnet        m =  ………. A.m2  

 Horizontal component of earth’s magnetic field, Bh =  ……….. T 

 
 
*Standard data 
 Permeability of the free space,     0μ  =  7 24π 10  NA� �u   
 Horizontal component of earth’s magnetic field Bh =  0.38u10�4 T  
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Exp.No.1.18 

Searle’s Vibration magnetometer-moment and ratio of moments 
Aim: To determine the moment of a given bar magnet and compare the moments of two 
magnets using Searle’ vibration magnetometer.  
Apparatus: The Searle’s vibration magnetometer, given bar magnets, compass box, stop 
watch, scale, etc.  

The Searle’s vibration magnetometer consists of a cylindrical glass vessel in which a brass 
cylinder, on which a magnetic needle and an aluminum pointer are fixed, is suspended by means 
of a torsionless silk thread as shown in the figure below. 
Theory: The oscillations of a magnet of moment ‘m’ suspended in a magnetic field of strength 
B is simple harmonic. It can be shown that the time period of oscillation is, 
 

          T =  I2π
mB

         (1) 

where I is moment of inertia of the suspended magnet. (In this case I is the moment of inertia of 
the system consisting the brass cylinder, magnetic needle and aluminum pointer). If ‘n’ is the 
corresponding frequency, we can write, 
 

      1
n

 =   I2π
mB

        

Or,  n2 v   B  (2) 

Let n0 be the frequency of 
oscillation of the suspended 
system in the earth’s field 
alone. Then 
 
      2

0n  v  hB   (3) 

If a magnet of moment M is 
placed at a distance ‘d’ from the suspended magnetic needle such that the net field is given by, B 
= BM + Bh, the corresponding frequency of oscillation ‘n’ is given by, 
 
          n2 v   BM + Bh         (4) 
Dividing eqn.4 by eqn.3, 

       
2

2
0

n
n

 =  M h

h

B B
B
�  =  M

h

B 1
B

�  

    M

h

B
B

 =     
2

2
0

n 1
n

�  =  
2 2

0
2
0

n n
n
�        

?       BM = 
2 2

0
h 2

0

n nB
n

§ ·�
¨ ¸
© ¹

        (5) 

Since BM is the axial field due to the bar magnet, we can write, 

S N 

d 
N S 
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� �

0
22 2

μ 2Md
4π d l�

 =  
2 2

0
h 2

0

n nB
n

§ ·�
¨ ¸
© ¹

 

? Moment of the magnet, M =  
� �22 2 2 2

0
h2

0 0

d n n4π B
μ 2d n

l� § ·�
¨ ¸
© ¹

     (6) 

Let M1 and M2 be the magnetic moments of two magnets and n1 and n2 the corresponding 
frequencies, then the ratio of their magnetic moments is given by, 

   1

2

M
M

 =      

� �

� �

22 2 2 2
1 1 1 0

h2
0 1 0

22 2 2 2
2 2 2 0

h2
0 2 0

d n n4π B
μ 2d n

d n n4π B
μ 2d n

l

l

� § ·�
¨ ¸
© ¹

� § ·�
¨ ¸
© ¹

 =  
� �
� �

22 2 2 2
1 1 1 02

2 2 22 2
1 2 02 2

d n nd
d n nd

l

l

� § ·§ · �
¨ ¸¨ ¸ �© ¹� © ¹

  (7) 

If the magnets are placed at the same distances, we can write, 

    1

2

M
M

 =  
� �
� �

22 2 2 2
1 1 0

2 2 22 2
2 02

d n n
n nd

l

l

� § ·�
¨ ¸�� © ¹

       (8) 

Procedure: The magnetic meridian is drawn on the table using a compass box as mentioned in 
exp.No.17. A chalk mark is made on this line. The Searle’s vibration magnetometer is placed just 
over this mark and its compass needle is adjusted to be parallel to the magnetic meridian. The 
magnetic needle is made to oscillate by bringing a magnet near the vibration magnetometer and 
is taken away. The time for 10 oscillations of the magnetic needle in the earth’s field alone is 
determined for three times and the average frequency is calculated. Then the given magnet 
whose moment is to be determined is placed at a distance ‘d from the centre of Searle’s vibration 
magnetometer on one of the sides (southern side or northern side) with its north pole pointing 
geographic north. The magnetic needle of the magnetometer is now set into oscillation by 
bringing another magnet near it and is taken away. The time for 10 oscillations is determined 
three times and the average frequency is calculated. The experiment is repeated by placing the 
magnet on the other side at the same distance. The entire experiment is repeated for at least three 
distances.  Moment of the magnet is calculated using eqn.6.  

To compare the ratio of the magnetic moments the entire experiment is repeated for second 
magnet keeping at the same distances as in the case of the first magnet and the average frequency 
is calculated. The ratio of the magnetic moments is calculated using eqn.8. 

x Magnet should be placed at a height such that the axis of the bar magnet and the axis of 
the magnetic needle of the vibration magnetometer coincide.  

x Magnet should be placed such that its north pole always points towards the geographic 
north, since in the derivation of the formula it is assumed that the net magnetic field B is 
BM + Bh.  

x To do this experiment one can arrange a deflection magnetometer in the Tan B position 
with the compass box is replaced by the Searle’s vibration magnetometer.  

x The suspended magnet is set into oscillation by bringing another magnet near the north 
pole or south pole of it in the perpendicular direction and is taken away. 
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Observation and tabulation 
To determine the frequency of oscillation n0 in the earth’s field alone 

Time for 10 oscillations t seconds Frequency 
n0 = 10/t per sec 1 2 3 Mean t sec 

     
 
To determine the frequencies of oscillation with the two magnets 

Distance 
‘d’ 
m 

Magnet 1 Magnet 2 
Time for 10 oscillations t1 in 

sec. 

M
ea

n 
t 1 

se
c 

n 1
 =

 1
0/

t 1 

Time for 10 oscillations t2 in 
sec. 

M
ea

n 
t 2 

se
c 

n 2
 =

 1
0/

t 2 

Southern side Northern side Southern side Northern side 
1 2 3 1 2 3 1 2 3 1 2 3 

                 
                 
                 
 
 Length of the first magnet,            L1 =  …….. cm =  ………. m 

 Half the length of the first magnet, l1 =       L1/2 =  ………. m 

 Length of the second magnet,        L2 =  …….. cm =  ………. m 

 Half the length of the second magnet,        l2 = L2/2 =  ………. m 

Calculation of the moment 

 
‘d’ in m 

 
n1 per sec � �22 2 2 2

1 1 0
1 h2

0 0

d n n4πm B
μ 2d n

l� § ·�
 ¨ ¸

© ¹
 

Mean m1 
Am2 

    
    
    
 
Calculation of the ratio of the moments 

 
‘d’ in m 

 
n1 per sec 

 
n2 per sec � �

� �

22 2 2 2
1 1 01

2 2 22 2
2 2 02

d n nM
M n nd

l

l

� § ·�
 ¨ ¸�� © ¹

 
Mean 1

2

M
M

 

     
     
     
 
Result 
 Moment of the first magnet,        M1 =  ……… Am2 

 Ratio of the magnetic moments, 1

2

M
M

 =  ……… 
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Potentiometer 

A potentiometer is a device used for measuring or comparing potential differences. It can 
also be used to measure any electrical quantity which can be converted into a proportionate DC 
potential difference. 

Potentiometer consists of a uniform wire AB of length 10 m stretched on a wooden board in 
10 equal rows as shown in the figure above. For theoretical purpose we show AB as a single line.  
 
Theory of potentiometer 
  

Let a steady current I be passed through the 
wire AB with the help of a cell of e m f Ec.  Let 
ρ be the resistance per unit length of the 
potentiometer wire and J is a sliding contact. 
Let AB = L and AJ = l. Then, 

 
 Potential difference across AB =  ILρ 

Potential difference across AJ  =  Ilρ 

?        PD across AB
PD across AJ

 = ILρ
I ρl

 =  L
l

       (1) 

?         PD across AJ =  PD across AB
L

l§ ·
¨ ¸
© ¹

  =  PD per unit lengthulength of the wire (2) 

Thus, when a steady current is flowing through the potentiometer wire AB, the PD across 
any length of the wire is proportional to the length of the wire.  

 
If a DC voltmeter is connected between A and the variable point J it can be seen that the 

voltmeter registers greater values as the contact maker J moves from A to B. 
 
If another cell of e m f equal to PD across AJ is connected between A and J as shown in the 

figure, no current will flow in the secondary circuit and the galvanometer will show no 
deflection.   

 

A B 
L 

l 
G 

HR 

J 

E 

Ec 

A 

B 

2 

3 4 

5 6 

7 8 

9 10 

1 

Odd numbered rows from left to right 
Even numbered rows from right to left 
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Exp.No.1.19 
Potentiometer- Determination of resistance and resistivity 

Aim: To determine the resistance of a given wire and hence its resistivity using a potentiometer. 
Apparatus: The potentiometer, power supplies, rheostats, standard resistance, resistance wire 
(unknown resistance), high resistance, galvanometer, six terminal key and ordinary keys etc. 
Theory: The steady current flowing through the wire AB by the cell Ec in the primary produces 
a constant potential difference per unit length. Thus, the potential difference across any length of 
the wire AJ is proportional to the length AJ. Let I be the steady current flowing through the 
secondary circuit containing the known resistance R and the unknown resistance X. Let lR and lX, 
respectively, be the balancing lengths corresponding to the voltage across the R and X. Then by 
the principle of potentiometer, 
 
         IR v   lR     (1) 
        IX v   lX    (2) 
Dividing eqn.2 by eqn.1, we get, 

       X
R

 =  X

R

l
l

 

?         X =  X

R

Rl
l

 (3) 

Remember, 
R

IR
l

 is the potential 

difference per unit length. The 
resistivity of the material is defined 
as follows. The resistance X of the given resistance wire is proportional to its length L and 
inversely proportional to its area of cross section A. That is, 
 

         X v  L
A

 

        X =  Lρ
A

         (4) 

The proportionality constant U is called the resistivity of the material of the resistance wire.  

  Resistivity, U =  AX
L

 =  
2πr X
L

       (5)  

where, ‘r’ is the radius of the resistance wire. 
Procedure: Connections are made as shown in the figure. Insert the keys K1 and K2. First 
insert the keys in between 2 and 3 and 4 and 5 of the six terminal key. Check for deflections in 
the opposite directions when the sliding contact J is pressed near end A and then at the end B. 
Then insert the keys in between 1 and 2 and 5 and 6 of the six terminal key. Again check for 
deflections in the opposite directions. After ensuring that the deflections are in the opposite 
directions for both R and X, apply the P D across R to the potentiometer wire by inserting the 
keys in between 2 and 3 and 4 and 5 of the six terminal key. Find out the balancing length lR. 

A B 

G 

J 
Ec 

HR 

Rh1 

Rh2 

R 

1 
2 
3 

K1 

K2 

5 
6 

4 
X I I 
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Then unplug the keys in between 2 and 3 and 4 and 5. Then apply the P D across the unknown 
resistance X by inserting the keys in between 1 and 2 and 5 and 6 of the six terminal key. Find 
out the balancing length lX. (Ensure that the rheostats are not adjusted while finding out both the 
balancing lengths). The experiment is repeated by changing the rheostat adjustment or by 
changing the standard resistance.  

The length of the wire L (in between the terminals) is measured by a scale and its radius ‘r’ 
is measured by a screw gauge. Calculate the resistance and resistivity using eqns.3 and 5. 
Precautions   

x Check the voltages of the cells or power supplies used. 
x Clean the ends of the connecting wires. 
x Ensure that the wires are not broken. If there is no deflection check the continuity of the 

circuit with a multimeter. 
x Ensure that the secondary voltage applied to the potentiometer (in this case P D across 

the standard resistance R and P D across the unknown resistance X) should not exceed 
the P D across A B of the potentiometer wire due to the cell in the primary circuit.  

x Ensure that all the positive potential sides are connected to the terminals 4, 5 and 6 and 
negative sides are connected to the terminals 1, 2 and 3. Remember that the end of the 
resistance at which current enters it is positive and the end at which current leaves is 
negative. 

x You can check the circuit by a method as follows. Unplug the key K1 in the primary 
circuit. By inserting keys in the secondary circuit and the suitable keys in the six terminal 
key apply the secondary voltage to the potentiometer. Press the sliding contact J at the 
ends A and B. Make sure that the deflections in the galvanometer are in the same 
direction. If there is no deflection check the voltage and continuity of secondary circuit. 
Now insert the key K1 in the primary circuit and check the deflections at A and B. If the 
deflections are in the opposite directions connections are correct. Otherwise, check the 
voltage and continuity of the primary circuit. This checking for opposite deflections must 
be done separately with P D across X and P D across R separately. 

x Ensure that for X and R we get deflections in the opposite directions. If not, either adjust 
the rheostats or change the standard resistance.  

x Ensure that during the determination of final balance point the key of the high resistance 
is to be inserted. 

x Ensure that the radius of the wire is measured at positions where there are no bends. The 
length of the wire is measured after unwinding the wire completely. Reduce the length 
needed for connections at the terminals. This is needed to make sure that the length L of 
the wire is the length in between the terminals. 

Observation and tabulation 
To find the unknown resistance 
Trial No. Known 

Resistance R : 
Balancing lengths X

R

RX l
l

  : Mean X : 
lR in cm lX in cm 

1      
2     
3     
4     
5     
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 Length of the resistance wire,        L =  …….. cm =  ……… m 

To find the radius of the wire using a screw gauge 

 Distance moved by the screw tip for 6 rotations of the head =  ……… mm 

 Pitch of the screw, P =  Distance moved by the screw tip
Number of rotations of the head

 =  ……… mm 

 Number of divisions on the head scale =  ……… 

 Least count (L C) =  Pitch
Number of divisions on the head scale

 =  ……. mm 

 Zero coincidence =  …….. ;    Zero error  =  ……. 

 Zero correction =  …….. 

Trial No. P S R 
‘x’ mm 

Observed 
H S R 

Corrected 
H S R ‘y’ 

Diameter of wire 
d x y LC � u  mm 

Mean d 
mm 

1      
2     
3     
4     
5     

 
 
  Radius of the wire, r =  d/2 =  ……… mm =  ……… m 

Calculation of resistivity 

 Resistivity,  U =  
2πr X
L

 =  …………..  =  …………. ohm.m  

Result 
 Resistivity of the material of the resistance wire, U =  ………. :.m 
 
*Standard data 

Material Resistivity 
:.m 

Aluminum 0.0262u10�6 
Bronze 0.30u10�6 
Constantan (Eureka) 0.47u10�6 
Copper 0.17u10�6 
Manganin 0.45u10�6 
Nickel 0.59u10�6 
Nichrome 1.10u10�6 
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Exp.No.1.20 
Potentiometer-Calibration of low range voltmeter 

Aim: To calibrate the given low range voltmeter. 
Apparatus: The potentiometer, power supplies, rheostats, standard resistance, the low range 
voltmeter, high resistance, galvanometer, six terminal key and ordinary keys etc. 
Theory  

 
To standardize the potentiometer 

we use a Daniel cell or a voltage source 
of 1.08 volt. If L is the balancing length 
corresponding to this voltage and l is the 
balancing length for the voltage across a 
standard resistance, 

  
         E   v  L            (1) 

 
And           V   v  l            (2) 
 
Dividing eqn.2 by 1,        

       V
E

 =   
L
l  

 

?               V =   E
L

l   (3) 
 
Then correction to the voltmeter reading, 

          V � V0   =  E
L

l  � V0  (4) 

A calibration graph is drawn by taking V0 along the X axis and the correction V�V0 along the Y 
axis. The graph may not have regular shape as shown in the fig.c. 

A B 

G 

J 

E 

Ec 

HR 

Rh1 

R 

1 
2 
3 

K1 

K2 
Fig.b: Three terminal key is used 

Rh2 

+ � V 

A B 

G 

J E 

Ec 

HR 

Rh1 

Rh2 

R 

1 
2 
3 

K1 

K2 
Fig.a: Six terminal key is used 

5 
6 

4 

V + � 

Fig.c 
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Procedure: Connections are made as shown in the fig.a or fig.b. The voltmeter to be calibrated 
is connected parallel to R. By adjusting rheostat Rh1 in the primary circuit, a steady current is 
established in the wire AB. First connect the terminals 1and 2 for fig.b (insert the keys in 
between 1 and 2 and 5 and 6 for fig.a) and the balancing length L corresponding to the voltage E 
is determined.  

Now disconnect 1 and 2 and connect terminals 2 and 3 for fig.b. (For fig.a remove the keys 
in between1 and 2 and 5 and 6 and insert in between 2 and 3 and 4 and 5). Adjust rheostat Rh2 to 
read the voltmeter a value say V0. Then the actual voltage developed across R is V. Find out the 
balancing length l corresponding to this voltage. 

The experiment is repeated for various readings of the voltmeter and a calibration graph is 
drawn by taking V0 along the X axis and the correction V�V0 along the Y axis as shown in the 
fig.c. 
Observation and tabulation 
 Standard voltage     E =  …………volts 

 Balancing length for standard e m f E  =  L =  ……… cm 

Voltmeter 
reading 
V0 volt 

Balancing length 
for PD across R 

l cm 

Calculated voltage 

V = E
L

l  volt 

Correction  � �0V V�  
volt 

0.1    
0.2    
0.3    
0.4    
0.5    
0.6    
0.7    
0.8    
0.9    
1    

  
Result 
 The given low range voltmeter is calibrated and the calibration graph is drawn. 
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Exp.No.1.21 
Carey Foster’s Bridge-Determination of resistance &resistivity 

Aim: To determine the unknown resistance and hence to find out the resistivity of the material 
of the resistance wire. 
Apparatus: Carey Foster’s bridge, given resistance wire, a cell (power supply), standard 
resistances, a resistance box, key, galvanometer, high resistance, etc. 
Theory: The basic principle of 
Carey Foster’s bridge is the 
Wheatstone’s principle. Carey 
Foster Bridge consists of a uniform 
wire AB of length 1 m stretched on 
a wooden board. Five metallic 
strips are fixed on the wooden 
board as shown the figure. G1, G2, 
G3 and G4 are gaps between the 
metal strips. Two equal resistances 
P and Q are connected in the gaps G2 and G3 respectively. The unknown resistance X is 
connected in the gap G1. A standard resistance R is connected in the gap G4. A standard cell is 
connected across the terminals C and F. A galvanometer G is connected between D and the 
contact maker J that is able to slide along AB.  
Theory*: The contact maker J 
is moved along the wire AB 
until the galvanometer shows no 
deflection. Then the bridge is 
said to be balanced. Let l1 be the 
balancing length as measured 
from the end A. Let D and E, 
respectively, be the end 
resistances at A and B. Let ρ be 
the resistance per unit length of 
the wire AB. The above bridge 
is equivalent to a Wheatstone’s 
bridge as shown fig.b.  

 
Applying Wheatstone’s principle we get, 
 

    P
Q

 =   
� �

1

1

X+α+ρ
R+β+ρ 100

l
l�

        (5) 

 
The resistances R and X are interchanged and the bridge is again balanced. The balancing 

length l2 is measured from the same end A. Then, 
 

    P
Q

 =    
� �

2

2

R+α+ρ
X+β+ρ 100

l
l�

        (6) 

Equating the RHS of eqns.5 and 6 we get, 

A B l1 100�l1 

G 

R X P Q 

G1 G2 G3 G4 

J 

C 

D 

F 

E K 

Fig.a 

X 

D 

ρl1 

P Q 

R 

E 

ρ(100�l1) 

D 

J 

C F G 

Fig.b 

R 
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P Q 

X 

E 

ρ(100�l2) 
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C F G 

Fig.c 
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� �

1

1

X+α+ρ
R+β+ρ 100

l
l�

 =    
� �

2

2

R+α+ρ
X+β+ρ 100

l
l�

 

Adding 1 on both sides, we get, 

        
� �

1

1

X+α+ρ
R+β+ρ 100

l
l�

  + 1 =      
� �

2

2

R+α+ρ
X+β+ρ 100

l
l�

  +  1 

  � �
� �

1 1

1

X+α+ρ +R+β+ρ 100
R+β+ρ 100

l l
l

�
�

  =     � �
� �

2 2

2

R+α+ρ X+β+ρ 100
X+β+ρ 100

l l
l

� �
�

 

Since the numerators are equal, we can equate the denominators. Thus we get, 

         � �1R+β+ρ 100 l�  =  � �2X+β+ρ 100 l�  

i.e.            X � ρl2 =   R � ρl1 

i.e.                X =   R + ρ(l2�l1)       (7) 

To find ρ: A thick copper strip is connected in the gap G1 and a small resistance Rc of the order 
of 0.1 : is connected in the gap G4 and the balancing length l3 is determined. Now the copper 
strip and Rc are interchanged and the balancing length l4 is determined. Then from eqn.7, since X 
= 0 and R = Rc in this case, we get, 
 
       0 =     Rc + ρ(l4�l3) 

i.e.      ρ =    
3 4

R
l l

c
�

        (8) 

Thus, by knowing R and ρ the unknown resistance X can be calculated using eqn.7. 
To find the resistivity Uc: The resistivity of the material is defined as follows. The resistance X 
of the given resistance wire is proportional to its length L and inversely proportional to its area of 
cross section A. That is, 
 

         X v  L
A

 

        X =  Lρ
A
c         (9) 

The proportionality constant U is called the resistivity of the material of the resistance wire.  

  Resistivity, Uc =  AX
L

 =  
2πr X
L

       (10)  

where, ‘r’ is the radius of the resistance wire. 

Procedure 
To find U  

The connections are made as shown in the fig.a. Suitable standard resistances P and Q are 
connected in the gaps G2 and G3. Instead of X connect a thick copper strip in the gap G1 and a 
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resistance box with fractional resistance in the gap G4. Take a resistance Rc = 0.2 : in the box. 
Find the balancing length l3. It is measured from the end A. Then interchange the copper strip 
and the resistance box. The balancing length l4 is determined. It is again measured from the end 
A. Calculate ‘U’ using eqn.8. The experiment is repeated for Rc = 0.3 :, 0.4 :, ……….. The 
average of ‘U’ is calculated.  

 
To find the resistance of the coil 

Connections are made as shown in fig.a. The resistance wire is connected in the gap G1 and 
a resistance box in the gap G4. Introduce a suitable resistance R in the box (read precautions) and 
the balancing length l1 is determined. It is measured from the end A. Then interchange the 
resistance wire and the resistance box and the balancing length l2 is determined. It is again 
measured from the end A. Repeat the experiment for different values of R. The resistance X is 
calculated by eqn.7.  

 
Precautions 

x Ensure that the resistances X and R are not far different. If they are equal you will get the 
balance point at the middle of the wire AB. To find approximately equal resistance the 
contact maker J is kept pressed at the middle of AB and find the resistance needed in R 
for no deflection in the galvanometer. Then take three readings with R less than and 
three more readings with R greater than this resistance. Increase or decrease the 
resistance in steps by 0.5 ohm (or 0.3 :). 

x When copper strip is used, instead of X, take only the fractional resistance 0.2, 0.3, 0.4, 
…… Since U is the resistance per unit length, sign of l3 � l4 is not considered. 

x The sign of l2 � l1 is very important. Take positive as positive negative as negative. 
x If you are not getting any deflection check the supply voltage and continuity of the 

circuit with a multimeter. 
x Remember the balancing length is always measured from the end A.   
x Tight all the plugged keys in all resistance boxes, since the loose keys create unwanted 

resistance in the circuit. 
 

Observation and tabulation 
To find U 

Sl.No. Resistance Rc 
ohms 

Balancing length with Rc in l3 a l4 
cm 

3 4

Rρ
l l

c
 

�  
:/cm 

Right gap 
l3 (cm) 

Left gap 
l4 (cm) 

1      
2      
3      
4      
5      

          Mean U  =   ………  :/cm 
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To find the unknown resistance X 

Sl.No. Resistance 
R 

ohms 

Balancing length with 
R in 

 
l2 � l1 

cm 

 
� �2 1X R ρ l l � �

ohm 

 
Mean X 

ohm Right gap 
l1 (cm) 

Left gap 
l2 (cm) 

1       
2      
3      
4      
5      
6      

 
 Length of the resistance wire,        L =  …….. cm =  ……… m 

To find the radius of the wire using a screw gauge 

 Distance moved by the screw tip for 6 rotations of the head =  ……… mm 

 Pitch of the screw, P =  Distance moved by the screw tip
Number of rotations of the head

 =  ……… mm 

 Number of divisions on the head scale =  ……… 

 Least count (L C) =  Pitch
Number of divisions on the head scale

 =  ……. mm 

 Zero coincidence =  …….. ;  Zero error  =  …….  ; Zero correction  =  …….. 

Trial No. P S R 
‘x’ mm 

Observed 
H S R 

Corrected 
H S R ‘y’ 

Diameter of wire 
d x y LC � u  mm 

Mean d 
mm 

1      
2     
3     
4     
5     

 
  Radius of the wire, r =  d/2 =  ……… mm =  ……… m 
Calculation of resistivity 

 Resistivity,  Uc =  
2πr X
L

 =  …………..  =  …………. ohm.m  

Result 
 Resistance of the given wire,                           X =  ……… ohm 

  Resistivity of the material of the resistance wire, Uc =  ………. :.m 
 
*Standard data (Refer exp.No.19) 
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Exp.No.1.22 

C++ Program to calculate Standard Deviation 
(Object oriented programming) 

Aim: To write and execute a C++ program (object oriented) to calculate the standard deviation. 

#include<iostream.h> 

#include<conio.h> 

#include<math.h> 

#define maxnumber 100 

class stddev 

{ 

private: 

  float x[1000]; 

  int n,i; 

public: 

 void getdata() 

 { 

  cout <<"\nEnter the number of data elements"; 

  cin>>n; 

  for(i=0;i<n;i++) 

  { 

   cout<<"\nEnter "<<i+1<<"th"<<" element : "; 

   cin>>x[i]; 

  } 

 } 

 float calc() 

 { 

  float sum=0; 

  float sqdev=0; 

  float mean,dev,stddev; 

  for (i=0;i<n;i++) 
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   sum=sum+x[i]; 

  mean=sum/n; 

  for (i=0;i<n;i++) 

   sqdev=sqdev+(x[i]-mean)*(x[i]-mean); 

  dev=sqrt(sqdev/n); 

  return(dev); 

 } 

}; 

void main() 

{ 

 char ch; 

 stddev s; 

 clrscr(); 

 s.getdata(); 

 cout<<"\nThe Standard Deviation of Given data= "<<s.calc(); 

 getch(); 

} 
 
Result 

C++ program (object oriented) to calculate the standard deviation is written and is 
executed. 
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Exp.No.1.23 

C++ Program to solve Quadratic Equation 
(Object oriented programming) 

Aim: To write and execute a C++ program (object oriented) to solve a quadratic equation. 

#include<iostream.h> 

#include<conio.h> 

#include<math.h> 

#include<stdio.h> 

float a1,b1,c1; 

class quad 

{ 

 public: 

  float a,b,c;// coefficients 

  void getcoefficients();//Function to get coefficients 

  void equal();// Function for equal roots 

  void imaginary(); //Function for imaginary roots 

  void real();//Function for unequal real roots 

}q;  // q as object 

// Definition of member functions 

void quad::getcoefficients() 

{ 

 cout<<"\n Enter the coefficient a:";cin>>a; 

 cout<<"\n Enter the coefficient b:";cin>>b; 

 cout<<"\n Enter the constant term c:";cin>>c; 

} 

void quad::equal() 

{ 

 cout<<"Equal roots ="<<�b/(2*a); 

} 

void quad::imaginary() 
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{ 

 float realpart,imaginarypart; 

 realpart=�b/(2*a); 

 imaginarypart=sqrt(� (b*b�4*a*c))/(2*a); 

 cout<<"\nFirst imaginary root="<<realpart<<"+i"<<imaginarypart; 

 cout<<"\nSecond imaginary root="<<realpart<<"�i"<<imaginarypart; 

} 

void quad::real() 

{ 

 cout<<"\nFirst real root="<<(�b+sqrt(b*b�4*a*c))/(2*a); 

 cout<<"\nSecond real root="<<(�b�sqrt(b*b�4*a*c))/(2*a); 

} 

main() 

{ 

 q.getcoefficients(); 
 if(q.a==0) 
  cout<<"\n linear roots="<<�(q.c)/(q.b); 
 else 
 { 
  float d; 
  d=q.b*q.b�(4*q.a*q.c); 
  if(d==0) 
   q.equal(); 
  else 
   if(d<0) 
    q.imaginary(); 
   else 
    q.real(); 
 } 
 getchar(); 
} 

Result  

C++ program (object oriented) to solve a quadratic equation is written and is executed. 
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Exp.No.1.24 

C++ Program to find the transpose of a matrix 
(Object oriented programming) 

Aim: To write and execute a C++ program (object oriented) to find the transpose of a matrix. 

#include<iostream.h> 

#include<conio.h> 

class matrix 

{ 

 private: 

  float mx[25][25]; 

  int row,col,i,j; 

 public: 

  void input(int row, int col) 
  { 
   cout<<"\nEnter matrix elements"; 
   for(i=0;i<row;i++) 
   { 
    for(j=0;j<col;j++) 
    { 
     cin>>mx[i][j]; 
    } 
   } 
  } 
  void display(int row, int col) 

  { 
   for(i=0;i<row;i++) 
   { 
    for(j=0;j<col;j++) 
    { 
     cout<<mx[i][j]<<"\t"; 
    } 
    cout<<"\n"; 
   } 
  } 
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  void transpose(int row, int col) 

  { 

   for(i=0;i<col;i++) 

   { 

    for(j=0;j<row;j++) 

    { 

     cout<<mx[j][i]<<"\t"; 

    } 

    cout<<"\n"; 

   } 

  } 

}; 

void main() 

{ 

 int m,n; 

 char ch; 

 matrix mat; 

 

  clrscr(); 

  cout<<"Enter the matrix size m and n :  "; 

  cin>>m>>n; 

  mat.input(m,n); 

  cout<<"\nThe given matrix is:\n"; 

  mat.display(m,n); 

  cout<<"\nThe Transpose of the given matrix is\n"; 

  mat.transpose(m,n); 

  getch(); 

 } 

Result 
C++ program (object oriented) to find the transpose of a matrix is written and is executed. 


